人工智慧國際學術論文
人工智慧是一個全新的未知領域,下面就是小編為您收集整理的人工智慧國際學術論文的相關文章,希望可以幫到您,如果你覺得不錯的話可以分享給更多小夥伴哦!
人工智慧國際學術論文一
摘要:本文論述了人工智慧在電氣傳動領域的發展概況。其中主要包括模糊控制、神經網路和遺傳演算法的應用特點及發展趨勢等
關鍵詞:神經網路控制模糊神經元控制自適應控制
一、引言
人工智慧控制技術一直沒能取代古典控制方法。但隨著現代控制理論的發展,控制器設計的常規技術正逐漸被廣泛使用的人工智慧軟體技術(人工神經網路、模糊控制、模糊神經網路、遺傳演算法等)所替代。這些方法的共同特點是:都需要不同數量和型別的必須的描述系統和特性的“apriori”知識。由於這些方法具有很多優勢,因此工業界強烈希望開發、生產使用這些方法的系統,但又希望該系統實現簡單、效能優異。
由於控制簡單,直流傳動在過去得到了廣泛的使用。但由於它們眾所周知的限制以及DSP技術的進步,直流傳動正逐漸被高效能的交流傳動所取代。但最近,許多廠商也推出了一些改進的直流驅動產品,但都沒有使用人工智慧技術。具信使用人工智慧的直流傳動技術能得到進一步的提高。
高效能的交流傳動瞬態轉矩的控制性能類似於他勵直流電機的控制性能。現有兩種高效能交流傳動的控制方法:向量控制(VC)和直接轉矩控制(DTC)。向量控制是德國的研究人員在二十多年前提出的,現在已經比較成熟,並已廣泛應用,很多生產廠商都推出了他們的向量控制交流傳動產品,最近又大量推出了無速度感測器的向量控制產品。儘管在高效能驅動產品中使用AI技術會極大地提高產品的效能,可是到目前為止只有兩個廠家在他們的產品中使用了人工智慧(AI)控制器;直接轉矩控制是大約在十五年前由德國和日本的研究人員提出的,在過去十年中得到大量的研究,現在ABB公司已向市場推出了直接轉矩控制的傳動產品,使得人們對直接轉矩控制的研究興趣增加,將來在直接轉矩控制中將會用到人工智慧技術,並將完全地不需要常規的電機數學模型了。
英國CT公司(ControlTechniqueplc)推出了世界上第一臺統一變頻器(Unidrive),其他一些公司也推出了相應的產品,現在這些產品都沒有使用人工智慧技術,“統一”的概念完全依靠軟體實現,這就為軟計算技術的實現提供了條件。具信在將來統一變頻器將使用直接轉矩控制以及各種形式的向量控制,單一使用直接轉矩控制技術的產品將遭到淘汰。本文也將討論人工智慧在統一變頻器中運用的一些方面,同時也包括AI控制器在VC和DTC中的運用。
AI控制器能否工業運用的關鍵一點是:實現這些控制器的硬體和軟體。大多數DSP控制的驅動器都有足夠的計算能力實現人工智慧的演算法,並且都能得到大多數人工智慧控制器軟計算所需要的訊號。透過運用適當的控制策略,就能大大地減少計算和硬體的負擔,從而把注意力集中於提高驅動器的效能、魯棒性和可靠性上面。
在將來,智慧技術在電氣傳動技術中佔相當重要的地位,特別是自適應模糊神經元控制器在效能傳動產品中將得到廣泛應用。但是,還有很多研究工作要做,現在還只有少數實際應用的例子(學術研究組實現少,工業運用的就更少了),大多數研究只給出了理論或模擬結果,因此,常規控制器在將來仍要使用相當長一段時間。
二、人工智慧控制器的優勢
文獻中,不同的人工智慧控制通常用完全不同的方法去討論。但AI控制器例如:神經、模糊、模糊神經,以及遺傳演算法都可看成一類非線性函式近似器。這樣的分類就能得到較好的總體理解,也有利於控制策略的統一開發。這些AI函式近似器比常規的函式估計器具有更多的優勢,這些優勢如下:
(1)它們的設計不需要控制物件的模型(在許多場合,很難得到實際控制物件的精確動態方程,實際控制物件的模型在控制器設計時往往有很多不確實性因素,例如:引數變化,非線性時,往往不知道)
(2)透過適當調整(根據響應時間、下降時間、魯棒效能等)它們能提高效能。例如:模糊邏輯控制器的上升時間比最優PID控制器快1.5倍,下降時間快3.5倍,過沖更小。
(3)它們比古典控制器的調節容易。
(4)在沒有必須專家知識時,透過響應資料也能設計它們。
(5)運用語言和響應資訊可能設計它們。
(6)它們有相當好的一致性(當使用一些新的未知輸入資料就能得到好的估計),與驅動器的特性無關。現在沒有使用人工智慧的控制演算法對特定物件控制效果十分好,但對其他控制物件效果就不會一致性地好,因此對必須具體物件具體設計。
(7)它們對新資料或新資訊具有很好的適應性。
(8)它們能解決常規方法不能解決的問題。
(9)它們具有很好的抗噪聲干擾能力。
(10)它們的實現十分便宜,特別是使用最小配置時。
(11)它們很容易擴充套件和修改。
人工智慧控制器可分為監督、非監督或增強學習型三種。常規的監督學習型神經網路控制器的拓樸結構和學習演算法已經定型,這就給這種結構的控制器增加了限制,使得計算時間過長,常規非人工智慧學習演算法的應用效果不好。採用自適應神經網路和試探法就能克服這些困難,加快學習過程的收斂速度。常規模糊控制器的規則初值和模糊規則表是既定“a-priori”型,這就使得調整困難,當系統得不到“a-priori”(既定)資訊時,整個系統就不能正常工作。而應用自適應AI控制器,例如使用自適應模糊神經控制器就能克服這些困難,並且用DSP比較容易實現這些控制器。
常規模糊邏輯控制器的設計經常使用嘗試法。需要“a-priori”資訊,如運用自適應智慧控制器就不需要“a-priori”(a-priroi規則庫和隸屬函式)資訊。值得注意的是,與常規非自適應智慧控制器相反,它根據輸入訊號更新它的“引數”,換句話說,它對變化的輸入訊號具有適應性。自適應控制器分兩類:間接和直接控制器,間接自適應人工智慧控制器有一個實時辯識模型,用於控制器的設計,間接控制器在每個取樣週期需要取樣控制物件的輸入和輸出訊號,辯識器和控制器有很多形式,而直接AI控制器用特性表來實現對控制物件的控制,這個特性表由兩個連續取樣週期間的誤差的變化量構成,用來控制電流響應。
如用模糊邏輯控制器,最簡單的應用可能是標量因子的運用。這種方法用現在的非自適應驅動器很容易實現,因而對工業界具有很大的吸引力。用改變隸屬函式形狀的方法可實現相似的效果。這種運用也可能透過改變規則來實現,如用直接AI控制器來實現,就是自適應控制器。它在每個取樣瞬間先使用上一個取樣週期採用的規則,如果得不到滿意的特性,就用新的規則替代,從而得到滿意的特性。
總而言之,當採用自適應模糊神經控制器,規則庫和隸屬函式在模糊化和反模糊化過程中能夠自動地實時確定。有很多方法來實現這個過程,但主要的目標是使用系統技術實現穩定的解,並且找到最簡單的拓樸結構配置,自學習迅速,收斂快速。
三、人工智慧在電氣傳動控制中的運用
這一部分主要討論人工智慧在交直流傳動中運用的進展。值得指出的是這是一個廣闊的領域,在過去二年中,研究活動極快的增長,本文只是概括一下人工智慧在電氣傳動中的運用這一領域的進展,不可能覆蓋研究的每一個可能領域。AI控制器在直流傳動中運用的大多數研究集中於模糊邏輯應用,在人工神經網路和其它智慧控制的研究還很少。下面主要討論模糊、神經元和模糊神經元和模糊神經元控制器在交直流傳動中的應用。
(一)人工智慧在直流傳動中的運用
1.模糊邏輯控制應用
主要有兩類模糊控制器,Mamdani和Sugeno型。到目前為止只有Mamdani模糊控制器用於調速控制系統中。限於篇幅本文不詳細討論其中的原因。值得注意的是這兩種控制器都有規則庫,它是一個if-then模糊規則集。但Sugeno控制器的典型規則是“如果X是A,並且y是B,那麼Z=f(x,y)”。這裡A和B是模糊集;Z=f(x,y)是x,y的函式,通常是輸入變數x,y的多項式。當f是常數,就是零階Sugeno模型,因此Sugeno是Mamdani控制器的特例。
Mamdani控制器由下面四個主要部分組成:
(1)模糊化實現輸入變數的測量、量化和模糊化。隸屬函式有多種形式。
(2)知識庫由資料庫和語言控制規則庫組成。開發規則庫的主要方法是:把專家的知識和經歷用於應用和控制目標;建模操作器的控制行動;建模過程;使用自適應模糊控制器和人工神經網路推理機制。
(3)推理機是模糊控制器的核心,能模仿人的決策和推理模糊控制行為。
(4)反模糊化實現量化和反模糊化。有很多反模糊化技術,例如,最大化反模糊化,中間平均技術等。
下面的表1由64個語言規則組成,是用於電氣傳動控制系統的一種可能規則表這個規則表相當大,實際應用中往往進行簡化。在各種出版物中,介紹了許多被模糊化的控制器,但這應與“充分模糊”控制器完全區分開來,“充分模糊”控制器才是完全意義上的模糊控制器,被模糊化的控制器易於實現,往往透過改造現有古典控制器得以實現,如被模糊化的PI控制器(FPIC)使用模糊邏輯改變控制器的比例、積分引數,從而使系統的效能得到提高(17),控制器引數的微小變化可能導致特性的極大提高,被模糊化的控制器引數調整方法如下:P(ti)=P(ti-1)+kP*CP,I(ti)=I(ti-1)*CI。但如應用“充分”模糊邏輯控制器,系統響應遠遠優於FPIC和最優古典PI控制器,用於最最佳化常規控制器的計算時間比模糊化控制器所需的時間多得多。因此,使用最小配置的FPIC控制器是可能的選擇之一,事實上,這也是用現有驅動裝置實現的最簡單方法。
在許多電氣傳動文獻中,介紹了用模糊邏輯控制器替代古典PI控制器(主要是速度調節器)改進系統響應的方法。可是,文獻(18)詳細探討了模糊邏輯控制器用於三環直流電機控制系統中所有環節(速度、電流和勵磁)的設計和調整的方法。作者也介紹了PI和PD控制器,文獻(9)介紹了最小配置模糊控制用於直流傳動中的可能性以及組合模糊控制器用於直流傳動中得到滿意響應的可能性。下節討論模糊神經控制的直流傳動裝置時,我們將討論這種速度和電樞電流調節器組合成單一控制器的情況。
2.ANNS的應用
過去二十年,人工神經網路(ANNS)在模式識別和訊號處理中得到廣泛運用。由於ANNS有一致性的非線性函式估計器,因此它也可有效的運用於電氣了傳動控制領域,它們的優勢是不需要被控系統的數學模型,一致性很好,對噪音不敏感。另外,由於ANNS的並行結構,它很適合多感測器輸入運用,比如在條件監控、診斷系統中能增強決策的可靠性,當然,最近電氣傳動朝著最小化感測器數量方向發展,但有時,多感測器可以減少系統對特殊感測器缺陷的敏感性,不需要過高的精度,也不需要複雜的訊號處理。
誤差反向傳播技術是多層前聵ANN最常用的學習技術。如果網路有足夠多的隱藏層和隱藏結點以及適宜的激勵函式,多層ANN只能實現需要的對映,沒有直接的技術選擇最優隱藏層、結點數和激勵函式,通常用嘗試法解決這個問題,反向傳播訓練演算法是基本的最快下降法,輸出結點的誤差反饋回網路,用於權重調整,搜尋最優。輸出結點的權重調整迭代不同於隱藏結點的權重調整迭代。透過使用反向傳播技術,能得到需要的非線性函式近似值,該演算法包括有學習速率引數,對網路的特性有很大影響。
反向傳播演算法是多層前聵ANN最廣泛使用的學習技術之一。但有時網路的收斂速度很慢,改進演算法的開發是一個重要研究領域。英國Aberdeen大學在這方面取得過令人鼓舞的成績,他們把常規的反向傳播演算法和其它AI技術結合起來,使得網路快速收斂,魯棒性更好。他們還研究過基於AI技術的最優拓撲結構網路,但沒有現成理論用於最優配置,Kolgomorov理論和其他理論也不適用,在神經網路的訓練劇中使用遺傳演算法可能會提高收斂速度,遺傳演算法是一種基於自然進化和遺傳機理的統計搜尋方法,它模仿自然界個體適者生存不適者淘汰的原理解決問題,每一代由染色體代表的(一套特徵串類似於DNA中的染色體)許多個體組成,每個個體代表搜尋空間的一個點和一個可能的解。值得注意的是在神經模糊實現中,有時必須使用不同形式的反向傳播技術,而不是已知的標準形式。反向傳播技術是線上(Supervised)學習技術,需要充分的輸入--輸出資料對,雖然這種限制也可以用另外的方法加以克服,但該方法是離線的。
日本和德國的研究人員試圖把ANNS用於控制電力變換器,但到目前為止沒有獲得滿意的結果,這也是一個很有趣的領域。主要的.有待解決的障礙是學習階段時間花費過長,總而言之,問題的關鍵是要給變換器的控制器找到一個滿意的非線性函式近似器、得到期望的非線性輸入--輸出對映。常規技術就能實現簡單的對映,而神經網路能實現更復雜的對映,並且由於它的並行結構這種對映相當快。
只有很少的論文討論神經網路在直流電機控制中的應用。文獻(21)介紹了兩個多層前饋人工神經網路在直流電機速度控制環中的應用。這是一種典型配置。辯識ANN用於訓練第二個ANN(神經控制器,即過程控制器),因此過程輸出跟隨給定訊號。學習過程用的是反向傳播演算法。該方法分為二步:第一步ANN被訓練用來代表控制物件的響應。這需要用到表示控制物件輸出和控制輸入關係的微分方程。第二步把ANN用於控制物件模型的辯識方案中。在這步中,把ANN與控制物件並行連線,每次迭代時,給ANN提供給定訊號作為ANN輸入訊號。辯識意味著調整權重,使ANN輸出訊號(即網路輸出)和控制物件輸出訊號(即正輸出)的誤差最小。在辯識階段,全域性誤差(即方差之和)以固定時間間隔被計算並與希望的最小值比較。第二個ANN是神經控制器被用於訓練以給出需要的控制物件響應。為了訓練這個網路,在每次取樣輸出時,必須知道誤差(Ec)但僅僅只知道控制物件輸出和希望輸出(由給定輸入決定)的最後誤差,辯識方案中的第一個ANN可將最後誤差Ec反向傳播,用來訓練控制器ANN。在誤差最小化過程中,全域性誤差能被最小化到希望的值。經過訓練辯識ANNS和控制ANNS,就可以在實時系統中運用被“調整”的神經自適應控制方案。文獻(21)介紹了採用ANN自適應速度控制方案的直流傳動系統的良好特性以及抗干擾性能。這也證明辯識ANN學習到了直流電機、變換器和負載的、未知時不變非線性操作特性。但值得指出的是,用於神經元控制器的訓練時間有時相當長,但這個困難可以用上面提到的高階技術、避免使用常規的反向傳播演算法的方法中以克服。
文獻(22)和(23)介紹了直流傳動系統的ANN控制,給出了理論和實驗結果。文獻(9)討論了直流傳動的模糊神經速度控制器。這是文獻中記載的第一次用單神經控制器成功替代雙環直流傳動系統的常規速度和電流PI調節器的例子。相對地上面討論過的直流傳動系統,該系統運用了更多的智慧技術,系統得到了進一步的簡化。有趣的是相對於古典多環PI調節器的實現,這裡的電樞電流控制主要起限制電樞電流的作用,並且是透過單個速度、電流組合的模糊神經控制器“自動”加以實現。
(二)人工智慧在交流傳動中的應用
1.模糊邏輯的應用
在大多數討論模糊邏輯在交流傳動中運用的文章中,都介紹的是用模糊控制器取代常規的速度調節器,可英國Aberdeen大學開發的全數字高效能傳動系統中有多個模糊控制器(4),這些模糊控制器不僅用來取代常規的PI或PID控制器,同時也用於其他任務。該大學還把模糊神經控制器用於各種全數字高動態效能傳動系統開發中。也有一些優秀的文章論述運用模糊邏輯控制感應電機的磁通和力矩。討論這種技術的第一篇文章發表於1992年(24)。該文中討論了兩種控制策略,如用第一種策略,規則表有36條規則,模糊控制器的輸入是磁通和轉矩誤差,根據轉矩和磁通誤差,改變磁通向量的輻值和旋轉方向,反模糊化技術用到的是中心梯度法,第一種策略沒有考慮最優電壓向量選擇的梯度。而第二種策略考慮了,這種方案被成功地實現了。
Galvan的兩篇文章(25)、(26)討論了用模糊化速度控制器實現感應電機的向量控制的方法。並給出了模擬結果。(也見3.1.1節討論的模糊化控制器)。向量控制器也是一種間接控制型別,並且很好的特性。文獻(27)提出了一種模糊邏輯速度控制器。它的輸入標定因子是變化的。實驗結果也驗證了所提方案的有效性。文獻(28)給出了向量控制器感應電機驅動系統的模擬結果。該系統中模糊速度控制器與常規的PI速度控制器和CRPWM塑變器一起使用,它往往用來補償可能的慣性和負載轉矩的擾動。常規PI控制器用來穩定系統的穩態速度響應。向量控制器使用轉子磁通觀測器觀測(UI觀測器,iw觀測器(1)(4)),模糊邏輯用於轉子電阻的估計。
到目前為止,只有兩種運用人工智慧技術的工業產品,其一是下節介紹的安川向量變頻器,另一個是日立向量變頻器,日立公司最近開發了J300系列IGBT向量變頻器,功率範圍是5.5KW--55KW。它的主要特點是使用無感測器向量控制演算法和強大的自調整功能。無感測器磁通向量控制方案取樣兩相定子電流,在初始自整定階段,電機和負載的慣性以及其他引數例如定子電感,定子和轉子電阻、勵磁電感等引數被計算。日立公司宣稱這是世界上第一臺使用模糊控制的變頻器。它考慮了電機和系統的特性,轉矩計算軟體在整個頻率範圍保證了轉矩的精確控制。變頻器的主要效能指標如下:1Hz時150%或更高的啟動轉矩;在3∶1的速度範圍(20到60HZ/16到50HZ)電機不用降低功率使用;速度調節比率小於。
J300系列變頻器由於使用了高速微處理器和內建DSP,因此具有很的響應速度,轉矩響應速度大約可達到0.1秒。它使用模糊邏輯控制電機電流和加減速斜率。它能根據電機負載和制動需要計算加減速的最優時間,因此不需要嘗試法進行調整。模糊邏輯加減速度函式根據模糊規則設定加減速度比例因子和速度,而模糊規則則用當前值與過載限幅(或其它限幅)值的差值以及電機電流和電壓的梯度作為輸入變數。梯度和差值構成四個隸屬函式,兩個隸屬函式是三角函式,另二個是半梯形。當用常規的簡單電流限幅控制,變頻器的斜率是步進型的,經常引起變頻器跳閘。特別是在減速時。當用模糊邏輯控制時,斜率十分平滑,變頻器假跳閘的現象也消除了。變頻器在風機和泵類的運用最能體現模糊邏輯控制的優勢。在這些應用中,不需要恆定的加減速時間或精確的位置控制。在這些應用中,不需要恆定的加減速時間或精確的位置控制。需要的是與負載條件有關的加減速度的最最佳化。模糊控制能實現加減速度的最優控制。
AI控制器也能提高直接轉矩控制系統的效能,這也是值得深入研究的一個寬廣領域。英國Aberdeen大學的研究人員開發了基於人工智慧的開關向量選擇器以及速度、轉矩、磁通觀測器等,初步結果令人鼓舞(9)。可以預見不久的將業,將會得到更好的結果,將會出現更多的工業應用產品(47)(48)。
2.神經網路的應用
非常少的文章討論神經網路用於交流電機的控制,大量文章討論神經網路在交流電機和驅動系統的條件監測和診斷中的運用。文獻(33)介紹了使用常規反向轉波演算法的ANN用於步進電機控制演算法的最最佳化。該方案使用實驗資料,根據負載轉矩和初始速度來確定最大可觀測速度增量。這就需要ANN學習三維圖形對映。該系統與常規控制演算法(梯形控制法)相比具有更好的效能,並且大大減少了定位時間,對負載轉矩的大範圍變化和非初始速度也有滿意的控制效果。文獻(34)用兩個ANNS控制和辯識感應電機,但只給出了模擬研究。這是第一篇討論神經網路在感應電機控制中的應用,這個方案與3.1節中討論的直流驅動方案類似,ANNS的結構是多層前饋型,運用常規反向傳播學習演算法。該系統由兩個子系統構成,一個系統透過電氣動態引數的辯識自適應控制定子電流,另一個系統透過對機電系統引數的辯識自適應控制轉子速度。該文討論了這些控制方案與常規方案的各種優點。
文獻(35)討論了基於人工神經網路的電氣機械系統,文獻(36)介紹了運用直接控制ANN觀測電壓源PWM供電的感應電機向量控制系統中的磁通的方法。這種基於ANN的磁通觀測器的主要優點是對諧波具有免疫性。ANN是使用反向傳播學習演算法的多層前饋型別。ANN觀測的磁通具有振盪性,因而引起轉矩振盪。如果用別的方法,可能得到更好的結果。
最後值得指出的是現在發表的大多數有關ANN對各種電機引數估計的論文,一個共同的特點是,它們都是用多層前饋ANNS,用常規反向傳播演算法,只是學習演算法的模型不同或被估計的引數不同。
四、結論
本文試圖對人工智慧電氣傳動控制系統領域的進展做一回顧。內容涉及模糊控制、神經網路、模糊神經網路在電氣傳動系統中的應用,討論了模糊、神經和模糊神經控制器等人工智慧技術的優點。也討論了人工智慧最小配置的應用。但到目前為止,使用人工智慧技術的變速傳動工業產品才剛剛出現,只有兩家公司推出他們的產品。雖然使用人工智慧技術的實際產品和應用還不多,但不久的將來,人工智慧技術在電氣傳動領域將會取得重要的地位,特別是自適應模糊神經控制器將在高效能驅動產品中得到廣泛使用。
人工智慧國際學術論文二
人工智慧(Artificial Intelligence), 英文縮寫為 AI, 是一門由計算機科學、控制論、資訊理論、語言學、神經生理學、心理學、數學、哲學等多種學科相互滲透而發展起來的綜合性新學科。自問世以來AI經過波波折折,但終於作為一門邊緣新學科得到世界的承認並且日益引起人們的興趣和關注。不僅許多其他學科開始引入或借用AI技術,而且AI中的專家系統、自然語言處理和圖象識別已成為新興的知識產業的三大突破口。
人工智慧的思想萌芽可以追溯到十七世紀的巴斯卡和萊布尼茨,他們較早萌生了有智慧的機器的想法。十九世紀,英國數學家布林和德o摩爾根提出了“思維定律“,這些可謂是人工智慧的開端。十九世紀二十年代,英國科學家巴貝奇設計了第一架“計算機器“,它被認為是計算機硬體,也是人工智慧硬體的前身。電子計算機的問世,使人工智慧的研究真正成為可能。
作為一門學科,人工智慧於1956年問世,是由“人工智慧之父“McCarthy及一批數學家、資訊學家、心理學家、神經生理學家、計算機科學家在Dartmouth大學召開的會議上,首次提出。對人工智慧的研究,由於研究角度的不同,形成了不同的研究學派。這就是:符號主義學派、連線主義學派和行為主義學派。
傳統人工智慧是符號主義,它以Newell和Simon提出的物理符號系統假設為基礎。物理符號系統是由一組符號實體組成,它們都是物理模式,可在符號結構的實體中作為組成成分出現,可透過各種操作生成其它符號結構。物理符號系統假設認為:物理符號系統是智慧行為的充分和必要條件。主要工作是“通用問題求解程式“(General Problem Solver, GPS):透過抽象,將一個現實系統變成一個符號系統,基於此符號系統,使用動態搜尋方法求解問題。
連線主義學派是從人的大腦神經系統結構出發,研究非程式的、適應性的、大腦風格的資訊處理的本質和能力,研究大量簡單的神經元的集團資訊處理能力及其動態行為。
人們也稱之為神經計算。研究重點是側重於模擬和實現人的認識過程中的感覺、知覺過程、形象思維、分散式記憶和自學習、自組織過程。
行為主義學派是從行為心理學出發,認為智慧只是在與環境的互動作用中表現出來。
人工智慧的研究經歷了以下幾個階段:
第一階段:50年代人工智慧的興起和冷落
人工智慧概念首次提出後,相繼出現了一批顯著的成果,如機器定理證明、跳棋程式、通用問題s求解程式、LISP表處理語言等。但由於消解法推理能力的有限,以及機器翻譯等的失敗,使人工智慧走入了低谷。這一階段的特點是:重視問題求解的方法,忽視知識重要性。
第二階段:60年代末到70年代,專家系統出現,使人工智慧研究出現新高潮
DENDRAL化學質譜分析系統、MYCIN疾病診斷和治療系統、PROSPECTIOR探礦系統、Hearsay-II語音理解系統等專家系統的研究和開發,將人工智慧引向了實用化。並且,1969年成立了國際人工智慧聯合會議(International Joint Conferences on Artificial Intelligence即IJCAI)。
第三階段:80年代,隨著第五代計算機的研製,人工智慧得到了很大發展
日本1982年開始了“第五代計算機研製計劃“,即“知識資訊處理計算機系統KIPS“,其目的是使邏輯推理達到數值運算那麼快。雖然此計劃最終失敗,但它的開展形成了一股研究人工智慧的熱潮。
第四階段:80年代末,神經網路飛速發展
1987年,美國召開第一次神經網路國際會議,宣告了這一新學科的誕生。此後,各國在神經網路方面的投資逐漸增加,神經網路迅速發展起來。
第五階段:90年代,人工智慧出現新的研究高潮
由於網路技術特別是國際互連網的技術發展,人工智慧開始由單個智慧主體研究轉向基於網路環境下的分散式人工智慧研究。不僅研究基於同一目標的分散式問題求解,而且研究多個智慧主體的多目標問題求解,將人工智慧更面向實用。另外,由於Hopfield多層神經網路模型的提出,使人工神經網路研究與應用出現了欣欣向榮的景象。人工智慧已深入到社會生活的各個領域。
IBM公司“深藍“電腦擊敗了人類的世界國際象棋冠軍,美國製定了以多Agent系統應用為重要研究內容的資訊高速公路計劃,基於Agent技術的Softbot(軟機器人)在軟體領域和網路搜尋引擎中得到了充分應用,同時,美國Sandia實驗室建立了國際上最龐大的“虛擬現實“實驗室,擬透過資料頭盔和資料手套實現更友好的人機互動,建立更好的智慧使用者介面。影象處理和影象識別,聲音處理和聲音識別取得了較好的發展,IBM公司推出了ViaVoice聲音識別軟體,以使聲音作為重要的資訊輸入媒體。國際各大計算機公司又開始將“人工智慧“作為其研究內容。人們普遍認為,計算機將會向網路化、智慧化、並行化方向發展。二十一世紀的資訊科技領域將會以智慧資訊處理為中心。
目前人工智慧主要研究內容是:分散式人工智慧與多智慧主體系統、人工思維模型、知識系統(包括專家系統、知識庫系統和智慧決策系統)、知識發現與資料探勘(從大量的、不完全的、模糊的、有噪聲的資料中挖掘出對我們有用的知識)、遺傳與演化計算(透過對生物遺傳與進化理論的模擬,揭示出人的智慧進化規律)、人工生命(透過構造簡單的人工生命系統(如:機器蟲)並觀察其行為,探討初級智慧的奧秘)、人工智慧應用(如:模糊控制、智慧大廈、智慧人機介面、智慧機器人等)等等。
人工智慧研究與應用雖取得了不少成果,但離全面推廣應用還有很大的距離,還有許多問題有待解決,且需要多學科的研究專家共同合作。未來人工智慧的研究方向主要有:人工智慧理論、機器學習模型和理論、不精確知識表示及其推理、常識知識及其推理、人工思維模型、智慧人機介面、多智慧主體系統、知識發現與知識獲取、人工智慧應用基礎等。