1. 首頁
  2. 總結範文

銳角三角函式知識點總結

銳角三角函式知識點總結

1、勾股定理:直角三角形兩直角邊a、b的平方和等於斜邊c的平方。

2、如下圖,在Rt△ABC中,∠C為直角,則∠A的銳角三角函式為(∠A可換成∠B):

3、任意銳角的正弦值等於它的餘角的餘弦值;任意銳角的餘弦值等於它的餘角的正弦值。

4、任意銳角的正切值等於它的餘角的餘切值;任意銳角的餘切值等於它的餘角的正切值。

5、0°、30°、45°、60°、90°特殊角的三角函式值(重要)

6、正弦、餘弦的`增減性:

當0°≤?≤90°時,sin?隨?的增大而增大,cos?隨?的增大而減小。

1、解直角三角形的定義:已知邊和角(兩個,其中必有一邊)→所有未知的邊和角。

依據:①邊的關係:a2?b2?c2;②角的關係:A+B=90°;③邊角關係:三角函式的定義。(注意:儘量避免使用中間資料和除法)

2、應用舉例:

(1)仰角:視線在水平線上方的角;俯角:視線在水平線下方的角。

(2)坡面的鉛直高度h和水平寬度l的比叫做坡度(坡比)。

3、從某點的指北方向按順時針轉到目標方向的水平角,叫做方位角。如圖3,OA、OB、OC、OD的方向角分別是:45°、135°、225°。

4、指北或指南方向線與目標方向線所成的小於90°的水平角,叫做方向角。如圖4,OA、OB、OC、OD的方向角分別是:北偏東30°(東北方向),南偏東45°(東南方向),南偏西60°(西南方向),北偏西60°(西北方向)。