初中數學一次函式相關公式
一次函式
表示式為y=kx+b(k≠0,k、b均為常數)的函式,叫做y是x的一次函式,當k>0時,y的值隨x值的增大而增大,當k<0時,y的值隨x值的增大而減小。當b=0時稱y為x的正比例函式,正比例函式是一次函式中的特殊情況。當常數項為零時的一次函式,可表示為y=kx(k≠0),這時的常數k也叫比例係數,正比例函式的y值是隨著x值的增大。
y關於自變數x的一次函式有如下關係:
1.y=kx+b (k為任意不為0的常數,b為任意實數)
當x取一個值時,y有且只有一個值與x對應。如果有2個及以上個值與x對應時,就不是一次函式。
x為自變數,y為因變數,k為常數,y是x的一次函式。
特別的,當b=0時,y是x的正比例函式。即:y=kx (k為常量,但k≠0)正比例函式影象經過原點。
定義域:自變數x的取值範圍。自變數的取值一要使函式有意義;二要與實際相符合。
常用的表示方法:解析法、影象法、列表法。
函式性質
1.在正比例函式時,x與y的商一定。在反比例函式時,x與y的積一定。
在y=kx+b(k,b為常數,k≠0)中,當x增大m倍時,函式值y則增大 m倍,反之,當x減少m倍時,函式值y則減少 m倍。
2.當x=0時,b為一次函式影象與y軸交點的縱座標,該點的座標為(0,b)。
3.當b=0時,一次函式變為正比例函式。當然正比例函式為特殊的一次函式。
4.在兩個一次函式表示式中:
當兩個一次函式表示式中的k相同,b也相同時,則這兩個一次函式的影象重合;
當兩個一次函式表示式中的k相同,b不相同時,則這兩個一次函式的影象平行;
當兩個一次函式表示式中的`k不相同,b不相同時,則這兩個一次函式的影象相交;
當兩個一次函式表示式中的k不相同,b相同時,則這兩個一次函式影象交於y軸上的同一點(0,b);
當兩個一次函式表示式中的k互為負倒數時,則這兩個一次函式影象互相垂直。
5.兩個一次函式(y1=k1x+b1,y2=k2x+b2)相乘時(k≠0),得到的的新函式為二次函式,
該函式的對稱軸為-(k2b1+k1b2)/(2k1k2);
當k1,k2正負相同時,二次函式開口向上;
當k1,k2正負相反時,二次函式開口向下。
二次函式與y軸交點為(0,b2b1)。
6.兩個一次函式(y1=ax+b,y2=cx+d)之比,得到的新函式y3=(ax+b)/(cx+d)為反比性函式,漸近線為x=-b/a,y=c/a。
一次函式的學習關乎後面的各種函式知識吸收,只有基礎打好了,後面的內容就不用擔心。