初中數學一元二次方程的公式定理
1、平方與平方根
2、面積與平方
(1)任意兩個正數的和的平方,等於這兩個數的平方和
(2)任意兩個正數的差的平方,等於這兩個數的平方和,再減去這兩個數乘積的2倍
任意兩個有理數的和(或差)的平方,等於這兩個數的平方和,再加上(或減去)這兩個數乘積的2倍
3、平方根
1正數有兩個平方根,這兩個平方根互為相反數;
2零隻有一個平方根,它就是零本身;
3負數沒有平方根
4、實數
無限不迴圈小數叫做無理數
有理數和無理數統稱為實數
5、平方根的運算
6、算術平方根的性質
性質1一個非負數的算術平方根的平方等於這個數本身
性質2一個數的平方的算術平方根等於這個數的絕對值
7、算術平方根的乘、除運算
1)算術平方根的乘法
sqrt(a)sqrt(b)=sqrt(ab)(a>=0,b>=0)
2算)術平方根的除法
sqrt(a)/sqrt(b)=sqrt(a/b)(a>=0,b>0)
透過分子、分母同乘以一個式子把分母中的根號化去火把根號中的`分母化去,叫做分母有理化
3)被開方數的每個因數的指數都小於2;(2)被開方數不含有字母我們把符合這兩個條件的平方根叫做最簡平方根
8‘算術平方根的加、減運算
如果幾個平方根化成最簡平方根以後,被開方數相同,那麼這幾個平方根就叫做同類平方根
9、一元二次方程及其解法
1)一元二次方程
只含有一個未知數,且未知數的最高次數是2的方程,叫做一元二次方程
2)特殊的一元二次方程的解法
3)一般的一元二次方程的解法——配方法
用配方法解一元二次方程的一般步驟是:
1、化二次項係數為1用二次項係數去除方程兩邊,將方程化為x^2+px+q=0的形式
2、移項把常數項移至方程右邊,將方程化為x^2+px=-q的形式
3、配方方程兩邊同時加上“一次項係數一半的平方”,是方程左邊成為含有未知數的完全平方形式,右邊是一個常數
4、有平方根的定義,可知
(1)當p^2/4-q>0時,原方程有兩個實數根;
(2)當p^2/4-q=0,原方程有兩個相等的實數根(二重根);
(3)當p^2/4-q<0,原方程無實根
10、一元二次方程的求根公式
一元二次方程ax^2+bx+c=0(a!=0)的求根公式:
當b^2-4ac>=0時,x1,2=(-b(+,-)sqrt(b^2-4ac))/2a
11、一元二次方程根的判別式
方程ax^2+bx+c=0(a!=0)
當delta=b^2-4ac>0時,有兩個不相等的實數根;
當delta=b^2-4ac=0時,有兩個相等的實數根;
當delta=b^2-4ac<時,沒有實數根
12、一元二次方程的根與係數的關係
以兩個數x1,x2為根的一元二次方程(二次項係數為1)是x^2-(x1+x2)x+x1x2=0
今天的內容就介紹到這裡了。