關於初中數學一元一次方程知識點總結
一、方程的有關概念
1.方程:含有未知數的等式就叫做方程.
2. 一元一次方程:只含有一個未知數(元)x,未知數x的指數都是1(次),這樣的方程叫做一元一次方程.例如: 1700+50x=1800, 2(x+1.5x)=5等都是一元一次方程.
3.方程的解:使方程中等號左右兩邊相等的未知數的值,叫做方程的解.
注:⑴ 方程的解和解方程是不同的概念,方程的解實質上是求得的結果,它是一個數值(或幾個數值),而解方程的含義是指求出方程的解或判斷方程無解的過程. ⑵ 方程的.解的檢驗方法,首先把未知數的值分別代入方程的左、右兩邊計算它們的值,其次比較兩邊的值是否相等從而得出結論.
二、等式的性質
等式的性質(1):等式兩邊都加上(或減去)同個數(或式子),結果仍相等.
等式的性質(1)用式子形式表示為:如果a=b,那麼a±c=b±c
等式的性質(2):等式兩邊乘同一個數,或除以同一個不為0的數,結果仍相等,等式的性質(2)用式子形式表示為:如果a=b,那麼ac=bc;如果a=b(c≠0),那麼ca=cb
三、移項法則:
把等式一邊的某項變號後移到另一邊,叫做移項.
四、去括號法則
1. 括號外的因數是正數,去括號後各項的符號與原括號內相應各項的符號相同.
2. 括號外的因數是負數,去括號後各項的符號與原括號內相應各項的符號改變.
五、解方程的一般步驟
1. 去分母(方程兩邊同乘各分母的最小公倍數)
2. 去括號(按去括號法則和分配律)
3. 移項(把含有未知數的項移到方程一邊,其他項都移到方程的另一邊,移項要變號)
4. 合併(把方程化成ax = b (a≠0)形式)
5. 係數化為1(在方程兩邊都除以未知數的係數a,得到方程的解x=a(b).
六、用方程思想解決實際問題的一般步驟
1. 審:審題,分析題中已知什麼,求什麼,明確各數量之間的關係.
2. 設:設未知數(可分直接設法,間接設法)
3. 列:根據題意列方程.
4. 解:解出所列方程.
5. 檢:檢驗所求的解是否符合題意.
6. 答:寫出答案(有單位要註明答案)
七、有關常用應用型別題及各量之間的關係
1. 和、差、倍、分問題:
增長量=原有量×增長率 現在量=原有量+增長量
(1)倍數關係:透過關鍵詞語“是幾倍,增加幾倍,增加到幾倍,增加百分之幾,增長率……”來體現.
(2)多少關係:透過關鍵詞語“多、少、和、差、不足、剩餘……”來體現.
2. 等積變形問題:
(1)“等積變形”是以形狀改變而體積不變為前提.常用等量關係為:
①形狀面積變了,周長沒變;
②原料體積=成品體積.
(2 )常見幾何圖形的面積、體積、周長計算公式,依據形雖變,但體積不變.
①圓柱體的體積公式 v=底面積×高=s·h=πr2h
②長方體的體積 v=長×寬×高=abc
3. 勞力調配問題:
這類問題要搞清人數的變化,常見題型有:
(1)既有調入又有調出;
(2)只有調入沒有調出,調入部分變化,其餘不變;
(3)只有調出沒有調入,調出部分變化,其餘不變
4. 數字問題
(1)要搞清楚數的表示方法:一般可設個位數字為a,十位數字為b,百位數字為c.
十位數可表示為10b+a, 百位數可表示為100c+10b+a. 然後抓住數字間或新數、原數之間的關係找等量關係列方程(其中a、b、c均為整數,且1≤a≤9, 0≤b≤9, 0≤c≤9)
(2)數字問題中一些表示:兩個連續整數之間的關係,較大的比較小的大1;偶數用2n表示,連續的偶數用2n+2或2n—2表示;奇數用2n+1或2n—1表示.
5. 工程問題:
工程問題:工作量=工作效率×工作時間
完成某項任務的各工作量的和=總工作量=1
6.行程問題:
路程=速度×時間 時間=路程÷速度 速度=路程÷時間
(1)相遇問題: 快行距+慢行距=原距
(2)追及問題: 快行距-慢行距=原距
(3)航行問題:順水(風)速度=靜水(風)速度+水流(風)速度
逆水(風)速度=靜水(風)速度-水流(風)速度
抓住兩碼頭間距離不變,水流速和船速(靜不速)不變的特點考慮相等關係.
7. 商品銷售問題
(1)商品利潤率=商品利潤/商品成本×100%
(2)商品銷售額=商品銷售價×商品銷售量
(3)商品的銷售利潤=(銷售價-成本價)×銷售量
(4)商品打幾折出售,就是按原標價的百分之幾十出售,如商品打8折出售,即按原標價的80%出售.有關關係式:商品售價=商品標價×折扣率
(5)商品利潤=商品售價—商品進價=商品標價×折扣率—商品進價
8. 儲蓄問題
⑴ 顧客存入銀行的錢叫做本金,銀行付給顧客的酬金叫利息,本金和利息合稱本息和,存入銀行的時間叫做期數,利息與本金的比叫做利率.利息的20%付利息稅
⑵ 利息=本金×利率×期數
本息和=本金+利息
利息稅=利息×稅率(20%)
(3)利潤=每個期數內的利息/本金×100%