初中數學圖形的知識點歸納
全等三角形的判定:
①邊角邊公理(SAS)
②角邊角公理(ASA)
③角角邊定理(AAS)
④邊邊邊公理(SSS)
⑤斜邊、直角邊公理(HL)
正方形定理公式
正方形的特徵:
①正方形的四邊相等;
②正方形的四個角都是直角;
③正方形的兩條對角線相等,且互相垂直平分,每一條對角線平分一組對角;
正方形的判定:
①有一個角是直角的菱形是正方形;
②有一組鄰邊相等的矩形是正方形。
平行四邊形
平行四邊形的性質:
①平行四邊形的對邊相等;
②平行四邊形的對角相等;
③平行四邊形的.對角線互相平分;
平行四邊形的判定:
①兩組對角分別相等的四邊形是平行四邊形;
②兩組對邊分別相等的四邊形是平行四邊形;
③對角線互相平分的四邊形是平行四邊形;
④一組對邊平行且相等的四邊形是平行四邊形。
直角三角形的性質:
①直角三角形的兩個銳角互為餘角;
②直角三角形斜邊上的中線等於斜邊的一半;
③直角三角形的兩直角邊的平方和等於斜邊的平方(勾股定理);
④直角三角形中30度
角所對的直角邊等於斜邊的一半;
直角三角形的判定:
①有兩個角互餘的三角形是直角三角形;
②如果三角形的三邊長a、b 、c有下面關係a^2+b^2=c^2,那麼這個三角形是直角三角形(勾股定理的逆定理)。
等腰三角形的性質:
①等腰三角形的兩個底角相等;
②等腰三角形的頂角平分線、底邊上的中線、底邊上的高互相重合(三線合一)
三角形
三角形的三邊關係定理及推論:三角形的兩邊之和大於第三邊,兩邊之差小於第三邊;
三角形的內角和定理:三角形的三個內角的和等於180度;
三角形的外角和定理:三角形的一個外角等於和它不相鄰的兩個的和;
三角形的外角和定理推理:三角形的一個外角大於任何一個和它不相鄰的內角;
三角形的三條角平分線交於一點(內心);
三角形的三邊的垂直平分線交於一點(外心);
三角形中位線定理:三角形兩邊中點的連線平行於第三邊,並且等於第三邊的一半;