1. 首頁
  2. 總結範文

初中一年級數學知識點總結

初中一年級數學知識點總結

初中一年級數學知識點總結一

一、知識框架

二.知識概念

1.有理數:

(1)凡能寫成 形式的數,都是有理數.正整數、0、負整數統稱整數;正分數、負分數統稱分數;整數和分數統稱有理數.注意:0即不是正數,也不是負數;-a不一定是負數,+a也不一定是正數;p不是有理數;

(2)有理數的分類: ① ②

2.數軸:數軸是規定了原點、正方向、單位長度的一條直線.

3.相反數:

(1)只有符號不同的兩個數,我們說其中一個是另一個的相反數;0的相反數還是0;

(2)相反數的和為0 ? a+b=0 ? a、b互為相反數.

4.絕對值:

(1)正數的絕對值是其本身,0的絕對值是0,負數的絕對值是它的相反數;注意:絕對值的意義是數軸上表示某數的點離開原點的距離;

(2) 絕對值可表示為: 或 ;絕對值的問題經常分類討論;

5.有理數比大小:(1)正數的絕對值越大,這個數越大;(2)正數永遠比0大,負數永遠比0小;(3)正數大於一切負數;(4)兩個負數比大小,絕對值大的反而小;(5)數軸上的兩個數,右邊的數總比左邊的數大;(6)大數-小數 > 0,小數-大數 < 0.

6.互為倒數:乘積為1的兩個數互為倒數;注意:0沒有倒數;若 a≠0,那麼 的倒數是 ;若ab=1? a、b互為倒數;若ab=-1? a、b互為負倒數.

7. 有理數加法法則:

(1)同號兩數相加,取相同的符號,並把絕對值相加;

(2)異號兩數相加,取絕對值較大的符號,並用較大的絕對值減去較小的絕對值;

(3)一個數與0相加,仍得這個數.

8.有理數加法的運算律:

(1)加法的交換律:a+b=b+a ;(2)加法的結合律:(a+b)+c=a+(b+c).

9.有理數減法法則:減去一個數,等於加上這個數的相反數;即a-b=a+(-b).

10 有理數乘法法則:

(1)兩數相乘,同號為正,異號為負,並把絕對值相乘;

(2)任何數同零相乘都得零;

(3)幾個數相乘,有一個因式為零,積為零;各個因式都不為零,積的符號由負因式的個數決定.

11 有理數乘法的運算律:

(1)乘法的交換律:ab=ba;(2)乘法的結合律:(ab)c=a(bc);

(3)乘法的分配律:a(b+c)=ab+ac .

12.有理數除法法則:除以一個數等於乘以這個數的倒數;注意:零不能做除數, .

13.有理數乘方的法則:

(1)正數的任何次冪都是正數;

(2)負數的奇次冪是負數;負數的偶次冪是正數;注意:當n為正奇數時: (-a)n=-an或(a -b)n=-(b-a)n , 當n為正偶數時: (-a)n =an 或 (a-b)n=(b-a)n .

14.乘方的定義:

(1)求相同因式積的運算,叫做乘方;

(2)乘方中,相同的因式叫做底數,相同因式的個數叫做指數,乘方的結果叫做冪;

15.科學記數法:把一個大於10的數記成a×10n的形式,其中a是整數數位只有一位的數,這種記數法叫科學記數法.

16.近似數的精確位:一個近似數,四捨五入到那一位,就說這個近似數的精確到那一位.

17.有效數字:從左邊第一個不為零的數字起,到精確的位數止,所有數字,都叫這個近似數的有效數字.

18.混合運演算法則:先乘方,後乘除,最後加減.

本章內容要求學生正確認識有理數的概念,在實際生活和學習數軸的基礎上,理解正負數、相反數、絕對值的意義所在。重點利用有理數的運演算法則解決實際問題.

體驗數學發展的一個重要原因是生活實際的需要.激發學生學習數學的興趣,教師培養學生的觀察、歸納與概括的能力,使學生建立正確的數感和解決實際問題的能力。教師在講授本章內容時,應該多創設情境,充分體現學生學習的主體性地位。

第二章 整式的加減

一.知識框架

二.知識概念

1.單項式:在代數式中,若只含有乘法(包括乘方)運算。或雖含有除法運算,但除式中不含字母的一類代數式叫單項式.

2.單項式的係數與次數:單項式中不為零的數字因數,叫單項式的數字係數,簡稱單項式的係數;係數不為零時,單項式中所有字母指數的和,叫單項式的次數.

3.多項式:幾個單項式的和叫多項式.

4.多項式的項數與次數:多項式中所含單項式的個數就是多項式的項數,每個單項式叫多項式的項;多項式裡,次數最高項的次數叫多項式的次數。

透過本章學習,應使學生達到以下學習目標:

1. 理解並掌握單項式、多項式、整式等概念,弄清它們之間的區別與聯絡。

2. 理解同類項概念,掌握合併同類項的方法,掌握去括號時符號的變化規律,能正確地進行同類項的合併和去括號。在準確判斷、正確合併同類項的基礎上,進行整式的加減運算。

3. 理解整式中的字母表示數,整式的加減運算建立在數的運算基礎上;理解合併同類項、去括號的依據是分配律;理解數的運算律和運算性質在整式的加減運算中仍然成立。

4.能夠分析實際問題中的數量關係,並用還有字母的式子表示出來。

在本章學習中,教師可以透過讓學生小組討論、合作學習等方式,經歷概念的形成過程,初步培養學生觀察、分析、抽象、概括等思維能力和應用意識。

第三章 一元一次方程

一.知識框架

二.知識概念

1.一元一次方程:只含有一個未知數,並且未知數的次數是1,並且含未知數項的係數不是零的整式方程是一元一次方程.

2.一元一次方程的標準形式: ax+b=0(x是未知數,a、b是已知數,且a≠0).

3.一元一次方程解法的一般步驟: 整理方程 …… 去分母 …… 去括號 …… 移項 …… 合併同類項 …… 係數化為1 …… (檢驗方程的解).

4.列一元一次方程解應用題:

(1)讀題分析法:………… 多用於“和,差,倍,分問題”

仔細讀題,找出表示相等關係的關鍵字,例如:“大,小,多,少,是,共,合,為,完成,增加,減少,配套-----”,利用這些關鍵字列出文字等式,並且據題意設出未知數,最後利用題目中的量與量的關係填入代數式,得到方程.

(2)畫圖分析法: ………… 多用於“行程問題”

利用圖形分析數學問題是數形結合思想在數學中的體現,仔細讀題,依照題意畫出有關圖形,使圖形各部分具有特定的含義,透過圖形找相等關係是解決問題的關鍵,從而取得佈列方程的依據,最後利用量與量之間的關係(可把未知數看做已知量),填入有關的代數式是獲得方程的基礎.

11.列方程解應用題的常用公式:

(1)行程問題: 距離=速度·時間 ;

(2)工程問題: 工作量=工效·工時 ;

(3)比率問題: 部分=全體·比率 ;

(4)順逆流問題: 順流速度=靜水速度+水流速度,逆流速度=靜水速度-水流速度;

(5)商品價格問題: 售價=定價·折· ,利潤=售價-成本, ;

(6)周長、面積、體積問題:C圓=2πR,S圓=πR2,C長方形=2(a+b),S長方形=ab, C正方形=4a,

S正方形=a2,S環形=π(R2-r2),V長方體=abc ,V正方體=a3,V圓柱=πR2h ,V圓錐= πR2h.

本章內容是代數學的核心,也是所有代數方程的基礎。豐富多彩的問題情境和解決問題的快樂很容易激起學生對數學的樂趣,所以要注意引導學生從身邊的問題研究起,進行有效的數學活動和合作交流,讓學生在主動學習、探究學習的過程中獲得知識,提升能力,體會數學思想方法。

初中一年級數學知識點總結二

第一章 豐富的圖形世界

1、幾何圖形

從實物中抽象出來的各種圖形,包括立體圖形和平面圖形。

立體圖形:有些幾何圖形的各個部分不都在同一平面內,它們是立體圖形。

平面圖形:有些幾何圖形的各個部分都在同一平面內,它們是平面圖形。

2、點、線、面、體

(1)幾何圖形的組成

點:線和線相交的地方是點,它是幾何圖形中最基本的圖形。

線:面和麵相交的地方是線,分為直線和曲線。

面:包圍著體的是面,分為平面和曲面。

體:幾何體也簡稱體。

(2)點動成線,線動成面,面動成體。

3、生活中的立體圖形

圓柱

生活中的立體圖形 球 稜柱:三稜柱、四稜柱(長方體、正方體)、五稜柱、……

(按名稱分) 錐 圓錐

稜錐

4、稜柱及其有關概念:

稜:在稜柱中,任何相鄰兩個面的交線,都叫做稜。

側稜:相鄰兩個側面的交線叫做側稜。

n稜柱有兩個底面,n個側面,共(n+2)個面;3n條稜,n條側稜;2n個頂點。

5、正方體的平面展開圖:11種

6、截一個正方體:用一個平面去截一個正方體,截出的面可能是三角形,四邊形,五邊形,六邊形。

7、三檢視

物體的三檢視指主檢視、俯檢視、左檢視。

主檢視:從正面看到的圖,叫做主檢視。

左檢視:從左面看到的圖,叫做左檢視。

俯檢視:從上面看到的圖,叫做俯檢視。

8、多邊形:由一些不在同一條直線上的線段依次首尾相連組成的封閉平面圖形,叫做多邊形。

從一個n邊形的同一個頂點出發,分別連線這個頂點與其餘各頂點,可以把這個n邊形分割成(n-2)個三角形。

弧:圓上A、B兩點之間的部分叫做弧。

扇形:由一條弧和經過這條弧的端點的兩條半徑所組成的圖形叫做扇形。

第二章 有理數及其運算

1、有理數的分類

正有理數

有理數 零

負有理數

或 整數

有理數

分數

2、相反數:只有符號不同的兩個數叫做互為相反數,零的相反數是零

3、數軸:規定了原點、正方向和單位長度的直線叫做數軸(畫數軸時,要注意上述規定的三要素缺一不可)。任何一個有理數都可以用數軸上的一個點來表示。解題時要真正掌握數形結合的思想,並能靈活運用。

4、倒數:如果a與b互為倒數,則有ab=1,反之亦成立。倒數等於本身的數是1和-1。零沒有倒數。

5、絕對值:在數軸上,一個數所對應的點與原點的距離,叫做該數的絕對值。(|a|≥0)。零的絕對值時它本身,也可看成它的相反數,若|a|=a,則a≥0;若|a|=-a,則a≤0。

6、有理數比較大小:正數大於零,負數小於零,正數大於一切負數;數軸上的兩個點所表示的數,右邊的總比左邊的大;兩個負數,絕對值大的反而小。

7、有理數的運算 :

(1)五種運算:加、減、乘、除、乘方

(2)有理數的運算順序

先算乘方,再算乘除,最後算加減,如果有括號,就先算括號裡面的。

(3)運算律

加法交換律

加法結合律

乘法交換律

乘法結合律

乘法對加法的分配律

第三章 字母表示數

1、代數式

用運算子號把數或表示數的字母連線而成的式子叫做代數式。單獨的一個數或一個字母也是代數式。

2、同類項

所有字母相同,並且相同字母的指數也分別相同的項叫做同類項。幾個常數項也是同類項。

3、合併同類項法則:把同類項的係數相加,字母和字母的指數不變。

4、去括號法則

(1)括號前是“+”,把括號和它前面的“+”號去掉後,原括號裡各項的符號都不改變。

(2)括號前是“﹣”,把括號和它前面的“﹣”號去掉後,原括號裡各項的符號都要改變。

5、整式的運算:

整式的加減法:(1)去括號;(2)合併同類項。

第四章 平面圖形及其位置關係

1、線段:繃緊的琴絃,人行橫道線都可以近似的看做線段。線段有兩個端點。

2、射線:將線段向一個方向無限延長就形成了射線。射線有一個端點。

3、直線:將線段向兩個方向無限延長就形成了直線。直線沒有端點。

4、點、直線、射線和線段的表示

在幾何裡,我們常用字母表示圖形。

一個點可以用一個大寫字母表示。

一條直線可以用一個小寫字母表示或用直線上兩個點的大寫字母表示。

一條射線可以用一個小寫字母表示或用端點和射線上另一點來表示(端點字母寫在前面)。

一條線段可以用一個小寫字母表示或用它的端點的兩個大寫字母來表示。

5、點和直線的位置關係有兩種:

①點在直線上,或者說直線經過這個點。

②點在直線外,或者說直線不經過這個點。

6、直線的性質

(1)直線公理:經過兩個點有且只有一條直線。

(2)過一點的直線有無數條。

(3)直線是是向兩方面無限延伸的,無端點,不可度量,不能比較大小。

(4)直線上有無窮多個點。

(5)兩條不同的直線至多有一個公共點。

7、線段的性質

(1)線段公理:兩點之間的所有連線中,線段最短。

(2)兩點之間的距離:兩點之間線段的長度,叫做這兩點之間的距離。

(3)線段的中點到兩端點的距離相等。

(4)線段的大小關係和它們的長度的大小關係是一致的。

8、線段的中點:

點M把線段AB分成相等的兩條相等的線段AM與BM,點M叫做線段AB的中點。

9、角:

有公共端點的兩條射線組成的圖形叫做角,兩條射線的公共端點叫做這個角的頂點,這兩條射線叫做這個角的邊。

或:角也可以看成是一條射線繞著它的端點旋轉而成的。

10、平角和周角:一條射線繞著它的端點旋轉,當終邊和始邊成一條直線時,所形成的角叫做平角。終邊繼續旋轉,當它又和始邊重合時,所形成的角叫做周角。

11、角的表示

角的表示方法有以下四種:

①用數字表示單獨的角,如∠1,∠2,∠3等。

②用小寫的希臘字母表示單獨的一個角,如∠α,∠β,∠γ,∠θ等。

③用一個大寫英文字母表示一個獨立(在一個頂點處只有一個角)的角,如∠B,∠C等。

④用三個大寫英文字母表示任一個角,如∠BAD,∠BAE,∠CAE等。

注意:用三個大寫英文字母表示角時,一定要把頂點字母寫在中間,邊上的字母寫在兩側。

12、角的度量

角的度量有如下規定:把一個平角180等分,每一份就是1度的角,單位是度,用“°”表示,1度記作“1°”,n度記作“n°”。

把1°的角60等分,每一份叫做1分的角,1分記作“1’”。

把 1’ 的角60等分,每一份叫做1秒的角,1秒記作“1””。

1°=60’,1’=60”

13、角的性質

(1)角的大小與邊的長短無關,只與構成角的兩條射線的幅度大小有關。

(2)角的大小可以度量,可以比較

(3)角可以參與運算。

14、角的平分線

從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線。

15、平行線:

在同一個平面內,不相交的兩條直線叫做平行線。平行用符號“∥”表示,如“AB∥CD”,讀作“AB平行於CD”。

注意:

(1)平行線是無限延伸的,無論怎樣延伸也不相交。

(2)當遇到線段、射線平行時,指的是線段、射線所在的直線平行。

16、平行線公理及其推論

平行公理:經過直線外一點,有且只有一條直線與這條直線平行。

推論:如果兩條直線都和第三條直線平行,那麼這兩條直線也互相平行。

補充平行線的判定方法:

(1)平行於同一條直線的兩直線平行。

(2)在同一平面內,垂直於同一條直線的兩直線平行。

(3)平行線的定義。

17、垂直:

兩條直線相交成直角,就說這兩條直線互相垂直。其中一條直線叫做另一條直線的垂線,它們的交點叫做垂足。

直線AB,CD互相垂直,記作“AB⊥CD”(或“CD⊥AB”),讀作“AB垂直於CD”(或“CD垂直於AB”)。

18、垂線的性質:

性質1:平面內,過一點有且只有一條直線與已知直線垂直。

性質2:直線外一點與直線上各點連線的所有線段中,垂線段最短。簡稱:垂線段最短。

19、點到直線的距離:過A點作l的垂線,垂足為B點,線段AB的長度叫做點A到直線l的距離。

20、同一平面內,兩條直線的.位置關係:相交或平行。

第五章 一元一次方程

1、方程

含有未知數的等式叫做方程。

2、方程的解

能使方程左右兩邊相等的未知數的值叫做方程的解。

3、等式的性質

(1)等式的兩邊同時加上(或減去)同一個代數式,所得結果仍是等式。

(2)等式的兩邊同時乘以同一個數((或除以同一個不為0的數),所得結果仍是等式。

4、一元一次方程

只含有一個未知數,並且未知數的最高次數是1的整式方程叫做一元一次方程。

5、解一元一次方程的一般步驟:

(1)去分母(2)去括號(3)移項(把方程中的某一項改變符號後,從方程的一邊移到另一邊,這種變形叫移項。)(4)合併同類項(5)將未知數的係數化為1

第六章 生活中的資料

1、科學記數法

一般地,一個大於10的數可以表示成 的形式,其中 ,n是正整數,這種記數方法叫做科學記數法。

2、扇形統計圖及其畫法:

扇形統計圖:利用圓與扇形來表示總體與部分的關係,即圓代表總體,圓中的各個扇形分別代表總體中的不同部分,扇形的大小反映部分佔總體的百分比的大小,這樣的統計圖叫做扇形統計圖。

畫法:

(1)計算不同部分佔總體的百分比(在扇形中,每部分佔總體的百分比等於該部分所對應的扇形圓心角的度數與360的比)。

(2)計算各個扇形的圓心角(頂點在圓心的角叫做圓心角)的度數。

(3)在圓中畫出各個扇形,並標上百分比。

3、各種統計圖的優缺點

條形統計圖:能清楚地表示出每個專案的具體數目。

折線統計圖:能清楚地反映事物的變化情況。

扇形統計圖:能清楚地表示出各部分在總體中所佔的百分比。

第七章 可能性

1、確定事件和不確定事件

(1 )、確定事件

必然事件:生活中,有些事情我們事先能肯定它一定會發生,這些事情稱為必然事件。

不可能事件:有些事情我們事先能肯定它一定不會發生,這些事情稱為不可能事件。

(2)、不確定事件:

有些事情我們事先無法肯定它會不會發生,這些事情稱為不確定事件

(3)、

必然事件

確定事件

事件 不可能事件

不確定事件

2、不確定事件發生的可能性

一般地,不確定事件發生的可能性是有大小的。

必然事件發生的可能性是1

不可能事件發生的可能性是0

附:初中一年級數學學習方法總結

一、初中數學學習的一般方法:

1.突出一個“勤”字(克服一個“惰”字)

數學家華羅庚曾經說過:“聰明在於學習,天才在於勤奮”

“勤能補拙是良訓,一分辛勞一分才:

我們在學習的時候要突出一個勤字,克服一個“懶”字,怎麼突出“勤”字

“聰”:怎麼個勤法,從這個字面上來看,要做到五勤:“耳勤”“眼勤”(耳朵聽,眼睛看,接受資訊)

“口勤”(討論,回答問題,而不是講話,消化資訊)“腦勤”(善於思考問題,積極思考問題——吸收、儲存資訊)那是不是做到以上四點就行了呢?不是。這個字還有缺陷,在聰下面加上“手”

“手勤”(動手多實踐,不僅光做題,做課件,做模型)

這樣的人聰明不聰明?

最大的提高學習效率,首先要做到—— 上課認真聽講(這是根本)回家先複習再做題如果課聽不好,就別想消化知識

2.學好初中數學還有兩個要點,要狠抓兩個要點:

學好數學,一要(動手),二要(動腦)。

動腦就是要學會觀察分析問題,學會思考,不要拿到題就做,找到已知和未知想象之間有什麼聯絡,多問幾個為什麼

動手就是多實踐,多做題,要“拳不離手”(武術)“曲不離口”(唱歌)

同學就是“題不離手”,這兩個要點大家要記住。

“動腦又動手,才能最大地發揮大腦的效率”

3.做到“三個一遍”

大家聽過“失敗是成功之母”聽過“重複是學習之母”嗎?

培根(18-19世紀英國的哲學家)——“知識就是力量”

“重複是學習之母”

如何重複,我給你們解釋一下:

“上課要認真聽一遍,動手推一遍,想一遍”

“下課 看 ”

“考試前 ”

4.重視“四個依據”

讀好一本教科書——它是教學、中考的主要依據;

記好一本筆記 ——它是教師多年經驗的結晶;

做好做淨一本習題集——它是使知識拓寬;

記好一本心得筆記,最好每人自己準備一本錯題集

二、分課前、課上、課後三個方面來談一談數學的學習。

1.課前做什麼,預習。有的同學會認為預習是浪費時間,上課聽老師講講不就可以了,為什麼還要花時間預習。其實預習非但不浪費時間,而且有很大的益處。首先,預習是對自己自學能力的鍛鍊。老師不可能教給你全部的知識,很多的知識都是靠自己自學得到的,這就需要我們有良好的自學能力。其次,透過自己預習得到的要比透過上課聽老師講得到的印象要深刻的多。

那該如何預習,預習些什麼內容呢?第一,要看課本,看課本上的基本概念和基本例題,對這部分內容要做到理解。因為這就是基礎,萬變不離其宗,後面的任何變化都離不開這個基礎。第二,在理解基本概念的基礎上完成課後的隨堂練習。因為透過什麼來檢測你是否理解了概念,只有透過題目。課後的隨堂練習的設定就是理解基本概念後的簡單的運用。如果預習的過程中有不懂的地方,要在書上做好記號,上課時就要著重聽這部分內容;如果內容簡單,自己能理解,那上課時就要聽老師是如何講解的,和自己對照一下,看看自己的理解是否正確,或者看看有沒有其他的解題思路

2.課上做什麼,認真聽講。聽課是學習中最重要的環節,是準確的掌握所學知識的關鍵。課上認真聽十分鐘勝過課後自己看書三十分鐘。那麼上課該如何認真聽講,聽什麼。第一、帶著在預習中未懂的問題聽課,注意力集中,儘可能把疑點在課中解決。

第二,對於在預習中認為弄懂了的問題,主要聽老師的講解是否和自己的理解一致,糾正自己在預習中對一些知識的片面理解或錯誤理解。

第三,在預習中沒有弄懂的問題,透過老師講懂了或還有疑問,要在課堂上把關鍵的地方記下來,課後要及時進行向老師請教,弄懂、弄明白。

第四,在聽課中注意不能只聽問題的答案,關鍵是聽老師講解例題的解題思路,明白瞭解題思路,你是學會了做這一類題,而不是隻是一道題。

例題是為鞏固數學知識而講,例題的作用是舉一反三。有人做過這樣一個實驗:

一個老師帶著一個初一班,他每週都測驗他的學生,而且公開告訴他的學生,考題全部他上課講的例題。學生開始一片譁然,90%的學生有信心拿滿分,只有班上幾個最差的學生不敢這麼說,很快第一次測驗結果出來了,及格率48%,滿分率不到8%,第二次情況有所好轉,初一時這個班數學成績與同年級數學特長班平均分相差12.5分。初二時與數學班只差1.5分,比年級平均分高10分。初三畢業,這個班幾乎與數學特長班沒有區別。

第五,注意聽老師在課堂中補充的例題,這些例題通常具有代表性,聽老師的解題思路,拓寬自己的知識,要學會自己可以動手解決這一類問題。

3.課後該怎麼做,完成練習和作業。要學好數學,必須多做練習,但並不是題海戰術。只顧看書,而不做或少做練習,是不可能學好數學的。而一味的做題,而不顧解題方法,也是很難在學習上收到成效的。

做練習要在有充分的準備之後,認真獨立地完成。所謂有充分準備,就是要先複習今天所學的知識和老師補充的例題,把課本上的知識弄懂之後才能做練習。如果課本知識還有不懂之處,應先複習課文,詢問同學或老師,直至懂了之後再做練習。

所謂認真,是指對每個習題都要認真思考,對問題的每個細節都應思考清楚。注意養成一個全面細緻地思考問題的習慣。這種良好習慣一旦養成,它會在你的一生中大有益處。另一方面,要認真演算,注意解答表述的條理性和解題格式的規範性。許多同學常常在考試中馬虎出錯,究其根源,必然形成馬馬虎虎的壞習慣。而“馬虎”會長久地帶來危害,這種壞習慣一旦養成,十分頑固,很難克服。

所謂獨立完成作業,就是要靠自己的能力完成作業。因為做練習的目的,一是鞏固所學知識,二是檢查對知識的理解是否正確,培養和提高分析解決問題的能力。

要敢於啃難題。遇到難題一定要反覆仔細推敲條件,深入思考,在山窮水盡、自己能力確實承受不了的情況下,問問別人是可以的,不要一覺得難,就不想做了。當然,做難題要耗費較長的時間。有些同學以為這樣做不合算,不如問問省事,這種想法是不全面的。其實,帳得算兩筆,比如你由於解難題耗費的時間較長聯想過很多知識,設想了很多解法,都失敗了,似乎收穫是“零”,但事實上,你獲得了大量的“副產品”,而這“副產品“的價值會遠遠大於本題目的價值。因為,由於解題的迫切需要聯想了很多知識,恰好是對這許許多多知識積極的複習;你想出了很多方法,雖然沒有能解決這個題目,但它是很好的思維訓練,對提高思維能力起到了不可低估的作用,況且這一個個方法很可能在解決其他題目上奏效。大數學家希爾伯特把“費爾馬大定理”這道難題叫做“能下金蛋的母雞”。正是因為有很多數學家在攻克“費爾馬大定理”的失敗中,發現和開創了許多新的數學領域,大大地推進了數學的發展。

對於數學《評價手冊》:學習教吃力的同學只要完成基本題就可以了,中等的同學完成辨析與反思;好的同學加上探索與思考;還有額外學習能力的同學可以選擇好一本課外書,自己挑選部分習題、能夠鞏固所學知識並拓展知識面的,在做題時儘量講究一題多解,發展自己分析問題和解決問題的能力。

做過的題目希望大家一段時間(一週之類)要消化,對於這類題目的解題方法要掌握,爭取做到舉一反三,觸類旁通,在練習當中,我認為“做”是次要的,而“思” 是主要的。出錯的地方也正是我們學習中最薄弱的地方,把這些地方弄懂弄通,避免在同一地方摔倒二次,這比把十道習題演算正確收效也許更大一些。

4.複習與總結。複習是為了鞏固,和遺忘做鬥爭;總結是為了條理知識,發現、掌握規律,積累經驗,有所提高。

學完每一章,要及時做好階段複習。階段複習要圍繞每一節知識的重點、難點,閱讀教材、聽課筆記、練習本,從中提煉出本章的知識重點和難點,特別對於曾不大懂和理解錯誤或不夠深度的地方,要著重複習鞏固。凡是在作業或測驗中不會做或做錯了的題目,在階段複習中要獨立做一遍,檢查一下對這些題目自己是否已經掌握。有些同學多次在某一類問題上出現錯誤,或曾不會做的題目,再考時仍不會做,正是沒有完成複習任務的結果。較難的知識與題日,不僅難做、難理解,而且很容易忘。反覆複習的本身,則是與遺忘作鬥爭的有效方法。階段總結是十分必要的,透過階段複習,應該有較大的提高。華羅庚有句名言:“讀書要由薄到厚,再由厚到薄”。階段總結,正是要完成由厚到薄的過程。總結要提煉出每一章知識的重點、難點,每一小節知識的重點與本章知識重點的聯絡,做出條理性的歸納和概括,從而積累解題經驗,提高分析解題的能力。

5.課外自學與研究。課外自學與研究的目的是擴大知識面,開闊眼界,掌握與積累思維方法和解題方法,進一步提高分析解題能力。圍繞所學的教材進度看一些課外參考書及數學雜誌,作一些較新鮮或難度較大的習題。課外自學應該是有計劃地有節制地進行,不要影響以上環節的學習,更不要影響其它學科的學習。在課外自學的過程中,發現一些新穎而有價值的習題、一些好地思維方法與解題方法,應該記下來,以便進一步學習掌握。

愛因斯坦說過:“成功==艱苦的勞動+正確的方法+少說空話”。對於渴望成功的同學來說,艱苦的勞動與少說空話是比較容易做到的,而正確的方法卻不是每個人都能摸索得出來的。……學習方法因人而異,望大家,“擇其善者而從之,其不善者而改之”。務使你擁有一套適合自己的學習方法。