1. 首頁
  2. 總結範文

高一數學知識點總結

高一數學知識點總結合集15篇

總結是事後對某一時期、某一專案或某些工作進行回顧和分析,從而做出帶有規律性的結論,它是增長才乾的一種好辦法,為此我們要做好回顧,寫好總結。但是卻發現不知道該寫些什麼,下面是小編為大家整理的高一數學知識點總結,僅供參考,希望能夠幫助到大家。

高一數學知識點總結1

數學是利用符號語言研究數量、結構、變化以及空間模型等概念的一門學科。小編準備了高一數學必修1期末考知識點,希望你喜歡。

一、集合有關概念

1、集合的含義:某些指定的物件集在一起就成為一個集合,其中每一個物件叫元素.

2、集合的中元素的三個特性:

1.元素的確定性; 2.元素的互異性; 3.元素的無序性

說明:(1)對於一個給定的集合,集合中的元素是確定的,任何一個物件或者是或者不是這個給定的集合的元素.

(2)任何一個給定的集合中,任何兩個元素都是不同的物件,相同的物件歸入一個集合時,僅算一個元素.

(3)集合中的元素是平等的,沒有先後順序,因此判定兩個集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣.

(4)集合元素的三個特性使集合本身具有了確定性和整體性.

3、集合的表示:{ } 如{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}

1. 用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}

2.集合的表示方法:列舉法與描述法.

注意啊:常用數集及其記法:

非負整數集(即自然數集)記作:N

正整數集 N*或N+ 整數集Z 有理數集Q 實數集R

關於屬於的概念

集合的元素通常用小寫的拉丁字母表示,如:a是集合A的元素,就說a屬於集合A 記作 aA ,相反,a不屬於集合A 記作 a?A

列舉法:把集合中的元素一一列舉出來,然後用一個大括號括上.

描述法:將集合中的元素的公共屬性描述出來,寫在大括號內表示集合的方法.用確定的條件表示某些物件是否屬於這個集合的方法.

①語言描述法:例:{不是直角三角形的三角形}

②數學式子描述法:例:不等式x-32的解集是{x?R| x-32}或{x| x-32}

4、集合的分類:

1.有限集 含有有限個元素的集合

2.無限集 含有無限個元素的集合

3.空集 不含任何元素的集合 例:{x|x2=-5}

二、集合間的基本關係

1.包含關係子集

注意: 有兩種可能(1)A是B的一部分,;(2)A與B是同一集合.

反之: 集合A不包含於集合B,或集合B不包含集合A,記作A B或B A

2.相等關係(55,且55,則5=5)

例項:設 A={x|x2-1=0} B={-1,1} 元素相同

結論:對於兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,同時,集合B的任何一個元素都是集合A的元素,我們就說集合A等於集合B,即:A=B

① 任何一個集合是它本身的子集.AA

②真子集:如果AB,且A1 B那就說集合A是集合B的真子集,記作A B(或B A)

③如果 AB, BC ,那麼 AC

④ 如果AB 同時 BA 那麼A=B

3. 不含任何元素的集合叫做空集,記為

規定: 空集是任何集合的子集, 空集是任何非空集合的真子集.

三、集合的運算

1.交集的定義:一般地,由所有屬於A且屬於B的元素所組成的集合,叫做A,B的交集.

記作AB(讀作A交B),即AB={x|xA,且xB}.

2、並集的定義:一般地,由所有屬於集合A或屬於集合B的元素所組成的集合,叫做A,B的並集.記作:AB(讀作A並B),即AB={x|xA,或xB}.

3、交集與並集的性質:AA = A, A=, AB = BA,AA = A,

A= A ,AB = BA.

4、全集與補集

(1)補集:設S是一個集合,A是S的一個子集(即 ),由S中所有不屬於A的元素組成的集合,叫做S中子集A的補集(或餘集)

(2)全集:如果集合S含有我們所要研究的各個集合的全部元素,這個集合就可以看作一個全集.通常用U來表示.

(3)性質:⑴CU(C UA)=A ⑵(C UA) ⑶(CUA)A=U

高一數學知識點總結2

圓的方程定義:

圓的標準方程(x—a)2+(y—b)2=r2中,有三個引數a、b、r,即圓心座標為(a,b),只要求出a、b、r,這時圓的方程就被確定,因此確定圓方程,須三個獨立條件,其中圓心座標是圓的定位條件,半徑是圓的定形條件。

直線和圓的位置關係:

1、直線和圓位置關係的判定方法一是方程的觀點,即把圓的方程和直線的方程聯立成方程組,利用判別式Δ來討論位置關係。

①Δ>0,直線和圓相交。②Δ=0,直線和圓相切。③Δ<0,直線和圓相離。

方法二是幾何的觀點,即把圓心到直線的距離d和半徑R的大小加以比較。

①dR,直線和圓相離。

2、直線和圓相切,這類問題主要是求圓的切線方程。求圓的切線方程主要可分為已知斜率k或已知直線上一點兩種情況,而已知直線上一點又可分為已知圓上一點和圓外一點兩種情況。

3、直線和圓相交,這類問題主要是求弦長以及弦的中點問題。

切線的性質

⑴圓心到切線的距離等於圓的半徑;

⑵過切點的半徑垂直於切線;

⑶經過圓心,與切線垂直的直線必經過切點;

⑷經過切點,與切線垂直的直線必經過圓心;

當一條直線滿足

(1)過圓心;

(2)過切點;

(3)垂直於切線三個性質中的兩個時,第三個性質也滿足。

切線的判定定理

經過半徑的外端點並且垂直於這條半徑的直線是圓的切線。

切線長定理

從圓外一點作圓的兩條切線,兩切線長相等,圓心與這一點的連線平分兩條切線的夾角。

高一數學知識點總結3

知識點總結

本節知識包括函式的單調性、函式的奇偶性、函式的週期性、函式的最值、函式的對稱性和函式的圖象等知識點。函式的單調性、函式的奇偶性、函式的週期性、函式的最值、函式的對稱性是學習函式的圖象的基礎,函式的圖象是它們的綜合。所以理解了前面的幾個知識點,函式的圖象就迎刃而解了。

一、函式的單調性

1、函式單調性的定義

2、函式單調性的判斷和證明:(1)定義法 (2)複合函式分析法 (3)導數證明法 (4)圖象法

二、函式的奇偶性和週期性

1、函式的奇偶性和週期性的定義

2、函式的奇偶性的判定和證明方法

3、函式的週期性的判定方法

三、函式的圖象

1、函式圖象的作法 (1)描點法 (2)圖象變換法

2、圖象變換包括圖象:平移變換、伸縮變換、對稱變換、翻折變換。

常見考法

本節是段考和高考必不可少的考查內容,是段考和高考考查的重點和難點。選擇題、填空題和解答題都有,並且題目難度較大。在解答題中,它可以和高中數學的每一章聯合考查,多屬於拔高題。多考查函式的單調性、最值和圖象等。

誤區提醒

1、求函式的單調區間,必須先求函式的定義域,即遵循“函式問題定義域優先的原則”。

2、單調區間必須用區間來表示,不能用集合或不等式,單調區間一般寫成開區間,不必考慮端點問題。

3、在多個單調區間之間不能用“或”和“ ”連線,只能用逗號隔開。

4、判斷函式的奇偶性,首先必須考慮函式的定義域,如果函式的定義域不關於原點對稱,則函式一定是非奇非偶函式。

5、作函式的圖象,一般是首先化簡解析式,然後確定用描點法或圖象變換法作函式的圖象。

高一數學知識點總結4

稜錐

稜錐的定義:有一個面是多邊形,其餘各面都是有一個公共頂點的三角形,這些面圍成的幾何體叫做稜錐

稜錐的的性質:

(1)側稜交於一點。側面都是三角形

(2)平行於底面的截面與底面是相似的多邊形。且其面積比等於截得的稜錐的高與遠稜錐高的比的平方

正稜錐

正稜錐的定義:如果一個稜錐底面是正多邊形,並且頂點在底面內的射影是底面的中心,這樣的稜錐叫做正稜錐。

正稜錐的性質:

(1)各側稜交於一點且相等,各側面都是全等的等腰三角形。各等腰三角形底邊上的高相等,它叫做正稜錐的斜高。

(3)多個特殊的直角三角形

esp:

a、相鄰兩側稜互相垂直的正三稜錐,由三垂線定理可得頂點在底面的射影為底面三角形的垂心。

b、四面體中有三對異面直線,若有兩對互相垂直,則可得第三對也互相垂直。且頂點在底面的射影為底面三角形的垂心。

高一數學知識點總結5

一、函式的概念與表示

1、對映

(1)對映:設A、B是兩個集合,如果按照某種對映法則f,對於集合A中的任一個元素,在集合B中都有唯一的元素和它對應,則這樣的對應(包括集合A、B以及A到B的對應法則f)叫做集合A到集合B的對映,記作f:A→B。

注意點:(1)對對映定義的理解。(2)判斷一個對應是對映的方法。一對多不是對映,多對一是對映

2、函式

構成函式概念的三要素

①定義域②對應法則③值域

兩個函式是同一個函式的條件:三要素有兩個相同

二、函式的解析式與定義域

1、求函式定義域的主要依據:

(1)分式的分母不為零;

(2)偶次方根的被開方數不小於零,零取零次方沒有意義;

(3)對數函式的真數必須大於零;

(4)指數函式和對數函式的底數必須大於零且不等於1;

三、函式的值域

1求函式值域的方法

①直接法:從自變數x的範圍出發,推出y=f(x)的取值範圍,適合於簡單的複合函式;

②換元法:利用換元法將函式轉化為二次函式求值域,適合根式內外皆為一次式;

③判別式法:運用方程思想,依據二次方程有根,求出y的取值範圍;適合分母為二次且∈R的分式;

④分離常數:適合分子分母皆為一次式(x有範圍限制時要畫圖);

⑤單調性法:利用函式的單調性求值域;

⑥圖象法:二次函式必畫草圖求其值域;

⑦利用對號函式

⑧幾何意義法:由數形結合,轉化距離等求值域。主要是含絕對值函式

四.函式的奇偶性

1.定義:設y=f(x),x∈A,如果對於任意∈A,都有,則稱y=f(x)為偶函式。

如果對於任意∈A,都有,則稱y=f(x)為奇

函式。

2.性質:

①y=f(x)是偶函式y=f(x)的圖象關於軸對稱,y=f(x)是奇函式y=f(x)的圖象關於原點對稱,

②若函式f(x)的定義域關於原點對稱,則f(0)=0

③奇±奇=奇偶±偶=偶奇×奇=偶偶×偶=偶奇×偶=奇[兩函式的定義域D1,D2,D1∩D2要關於原點對稱]

3.奇偶性的判斷

①看定義域是否關於原點對稱②看f(x)與f(-x)的關係

五、函式的單調性

1、函式單調性的定義:

2設是定義在M上的函式,若f(x)與g(x)的單調性相反,則在M上是減函式;若f(x)與g(x)的單調性相同,則在M上是增函式。

高一數學知識點總結6

集合的有關概念

1)集合(集):某些指定的物件集在一起就成為一個集合(集).其中每一個物件叫元素

注意:①集合與集合的元素是兩個不同的概念,教科書中是透過描述給出的,這與平面幾何中的點與直線的概念類似。

②集合中的元素具有確定性(a?A和a?A,二者必居其一)、互異性(若a?A,b?A,則a≠b)和無序性({a,b}與{b,a}表示同一個集合)。

③集合具有兩方面的意義,即:凡是符合條件的物件都是它的元素;只要是它的元素就必須符號條件

2)集合的表示方法:常用的有列舉法、描述法和圖文法

3)集合的分類:有限集,無限集,空集。

4)常用數集:N,Z,Q,R,N

子集、交集、並集、補集、空集、全集等概念

1)子集:若對x∈A都有x∈B,則AB(或AB);

2)真子集:AB且存在x0∈B但x0A;記為AB(或,且)

3)交集:A∩B={x|x∈A且x∈B}

4)並集:A∪B={x|x∈A或x∈B}

5)補集:CUA={x|xA但x∈U}

注意:A,若A≠?,則?A;

若且,則A=B(等集)

集合與元素

掌握有關的術語和符號,特別要注意以下的符號:(1)與、?的區別;(2)與的區別;(3)與的區別。

子集的幾個等價關係

①A∩B=AAB;②A∪B=BAB;③ABCuACuB;

④A∩CuB=空集CuAB;⑤CuA∪B=IAB。

交、並集運算的性質

①A∩A=A,A∩?=?,A∩B=B∩A;②A∪A=A,A∪?=A,A∪B=B∪A;

③Cu(A∪B)=CuA∩CuB,Cu(A∩B)=CuA∪CuB;

有限子集的個數:

設集合A的元素個數是n,則A有2n個子集,2n-1個非空子集,2n-2個非空真子集。

練習題:

已知集合M={x|x=m+,m∈Z},N={x|x=,n∈Z},P={x|x=,p∈Z},則M,N,P滿足關係()

A)M=NPB)MN=PC)MNPD)NPM

分析一:從判斷元素的共性與區別入手。

解答一:對於集合M:{x|x=,m∈Z};對於集合N:{x|x=,n∈Z}

對於集合P:{x|x=,p∈Z},由於3(n-1)+1和3p+1都表示被3除餘1的數,而6m+1表示被6除餘1的數,所以MN=P,故選B。

高一數學知識點總結7

1.二次函式y=ax^2,y=a(x-h)^2,y=a(x-h)^2+k,y=ax^2+bx+c(各式中,a≠0)的圖象形狀相同,只是位置不同,它們的頂點座標及對稱軸如下表:

解析式

頂點座標

對稱軸

y=ax^2

(0,0)

x=0

y=a(x-h)^2

(h,0)

x=h

y=a(x-h)^2+k

(h,k)

x=h

y=ax^2+bx+c

(-b/2a,[4ac-b^2]/4a)

x=-b/2a

當h>0時,y=a(x-h)^2的圖象可由拋物線y=ax^2向右平行移動h個單位得到,

當h<0時,則向左平行移動|h|個單位得到.

當h>0,k>0時,將拋物線y=ax^2向右平行移動h個單位,再向上移動k個單位,就可以得到y=a(x-h)^2+k的圖象;

當h>0,k<0時,將拋物線y=ax^2向右平行移動h個單位,再向下移動|k|個單位可得到y=a(x-h)^2+k的圖象;

當h<0,k>0時,將拋物線向左平行移動|h|個單位,再向上移動k個單位可得到y=a(x-h)^2+k的圖象;

當h<0,k<0時,將拋物線向左平行移動|h|個單位,再向下移動|k|個單位可得到y=a(x-h)^2+k的圖象;

因此,研究拋物線y=ax^2+bx+c(a≠0)的圖象,透過配方,將一般式化為y=a(x-h)^2+k的形式,可確定其頂點座標、對稱軸,拋物線的大體位置就很清楚了.這給畫圖象提供了方便.

2.拋物線y=ax^2+bx+c(a≠0)的圖象:當a>0時,開口向上,當a<0時開口向下,對稱軸是直線x=-b/2a,頂點座標是(-b/2a,[4ac-b^2]/4a).

3.拋物線y=ax^2+bx+c(a≠0),若a>0,當x≤-b/2a時,y隨x的增大而減小;當x≥-b/2a時,y隨x的增大而增大.若a<0,當x≤-b/2a時,y隨x的增大而增大;當x≥-b/2a時,y隨x的增大而減小.

4.拋物線y=ax^2+bx+c的圖象與座標軸的交點:

(1)圖象與y軸一定相交,交點座標為(0,c);

(2)當△=b^2-4ac>0,圖象與x軸交於兩點A(x?,0)和B(x?,0),其中的x1,x2是一元二次方程ax^2+bx+c=0

(a≠0)的兩根.這兩點間的距離AB=|x?-x?|

當△=0.圖象與x軸只有一個交點;

當△<0.圖象與x軸沒有交點.當a>0時,圖象落在x軸的上方,x為任何實數時,都有y>0;當a<0時,圖象落在x軸的下方,x為任何實數時,都有y<0.

5.拋物線y=ax^2+bx+c的最值:如果a>0(a<0),則當x=-b/2a時,y最小(大)值=(4ac-b^2)/4a.

頂點的橫座標,是取得最值時的自變數值,頂點的縱座標,是最值的取值.

6.用待定係數法求二次函式的解析式

(1)當題給條件為已知圖象經過三個已知點或已知x、y的三對對應值時,可設解析式為一般形式:

y=ax^2+bx+c(a≠0).

(2)當題給條件為已知圖象的頂點座標或對稱軸時,可設解析式為頂點式:y=a(x-h)^2+k(a≠0).

(3)當題給條件為已知圖象與x軸的兩個交點座標時,可設解析式為兩根式:y=a(x-x?)(x-x?)(a≠0).

7.二次函式知識很容易與其它知識綜合應用,而形成較為複雜的綜合題目。因此,以二次函式知識為主的綜合性題目是中考的熱點考題,往往以大題形式出現.

高一數學知識點總結8

圓的方程定義:

圓的標準方程(x—a)2+(y—b)2=r2中,有三個引數a、b、r,即圓心座標為(a,b),只要求出a、b、r,這時圓的方程就被確定,因此確定圓方程,須三個獨立條件,其中圓心座標是圓的定位條件,半徑是圓的定形條件。

直線和圓的位置關係:

1、直線和圓位置關係的判定方法一是方程的觀點,即把圓的方程和直線的方程聯立成方程組,利用判別式Δ來討論位置關係。

①Δ>0,直線和圓相交、②Δ=0,直線和圓相切、③Δ<0,直線和圓相離。

方法二是幾何的觀點,即把圓心到直線的距離d和半徑R的大小加以比較。

①dR,直線和圓相離、

2、直線和圓相切,這類問題主要是求圓的切線方程、求圓的切線方程主要可分為已知斜率k或已知直線上一點兩種情況,而已知直線上一點又可分為已知圓上一點和圓外一點兩種情況。

3、直線和圓相交,這類問題主要是求弦長以及弦的中點問題。

切線的`性質

⑴圓心到切線的距離等於圓的半徑;

⑵過切點的半徑垂直於切線;

⑶經過圓心,與切線垂直的直線必經過切點;

⑷經過切點,與切線垂直的直線必經過圓心;

當一條直線滿足

(1)過圓心;

(2)過切點;

(3)垂直於切線三個性質中的兩個時,第三個性質也滿足。

切線的判定定理

經過半徑的外端點並且垂直於這條半徑的直線是圓的切線。

切線長定理

從圓外一點作圓的兩條切線,兩切線長相等,圓心與這一點的連線平分兩條切線的夾角。

高一數學知識點總結9

1、高一數學知識點總結:集合一、集合有關概念

1.集合的含義

2.集合的中元素的三個特性:

(1)元素的確定性如:世界上最高的山

(2)元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y}

(3)元素的無序性:如:{a,b,c}和{a,c,b}是表示同一個集合

3.集合的表示:{…}如:{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}

(1)用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}

(2)集合的表示方法:列舉法與描述法。

注意:常用數集及其記法:

非負整數集(即自然數集)記作:N

正整數集N或N+整數集Z有理數集Q實數集R

1)列舉法:{a,b,c……}

2)描述法:將集合中的元素的公共屬性描述出來,寫在大

括號內表示集合的方法。{x∈R|x-3>2},{x|x-3>2}

3)語言描述法:例:{不是直角三角形的三角形}

4)Venn圖:

4、集合的分類:

(1)有限集含有有限個元素的集合

(2)無限集含有無限個元素的集合

(3)空集不含任何元素的集合例:{x|x2=-5}

2、高一數學知識點總結:集合間的基本關係

1.“包含”關係—子集

注意:A?B有兩種可能(1)A是B的一部分;(2)A與B是同一集合。

反之:集合A不包含於集合B,或集合B不包含集合A,記作A?/B或B?/A

2.“相等”關係:A=B(5≥5,且5≤5,則5=5)

例項:設A={x|x2

-1=0}B={-1,1}“元素相同則兩集合相等”即:①任何一個集合是它本身的子集。A?A

②真子集:如果A?B,且A≠B那就說集合A是集合B的真子集,記作AB(或BA)

③如果A?B,B?C,那麼A?C

④如果A?B同時B?A那麼A=B

3.不含任何元素的集合叫做空集,記為Φ

規定:空集是任何集合的子集,空集是任何非空集合的真子集。

有n個元素的集合,含有2n個子集,2n-1個真子集,一般我們把不含任何元素的集合叫做空集。

3、高一數學知識點總結:集合的分類(1)按元素屬性分類,如點集,數集。(2)按元素的個數多少,分為有/無限集

關於集合的概念:

(1)確定性:作為一個集合的元素,必須是確定的,這就是說,不能確定的物件就不能構成集合,也就是說,給定一個集合,任何一個物件是不是這個集合的元素也就確定了。

(2)互異性:對於一個給定的集合,集合中的元素一定是不同的(或說是互異的),這就是說,集合中的任何兩個元素都是不同的物件,相同的物件歸入同一個集合時只能算作集合的一個元素。

(3)無序性:判斷一些物件時候構成集合,關鍵在於看這些物件是否有明確的標準。

集合可以根據它含有的元素的個數分為兩類:

含有有限個元素的集合叫做有限集,含有無限個元素的集合叫做無限集。

非負整數全體構成的集合,叫做自然數集,記作N;

在自然數集內排除0的集合叫做正整數集,記作N+或N;

整數全體構成的集合,叫做整數集,記作Z;

有理數全體構成的集合,叫做有理數集,記作Q;(有理數是整數和分數的統稱,一切有理數都可以化成分數的形式。)

實數全體構成的集合,叫做實數集,記作R。(包括有理數和無理數。其中無理數就是無限不迴圈小數,有理數就包括整數和分數。數學上,實數直觀地定義為和數軸上的點一一對應的數。)

1.列舉法:如果一個集合是有限集,元素又不太多,常常把集合的所有元素都列舉出來,寫在花括號“{}”內表示這個集合,例如,由兩個元素0,1構成的集合可表示為{0,1}.

有些集合的元素較多,元素的排列又呈現一定的規律,在不致於發生誤解的情況下,也可以列出幾個元素作為代表,其他元素用省略號表示。

例如:不大於100的自然數的全體構成的集合,可表示為{0,1,2,3,…,100}.

無限集有時也用上述的列舉法表示,例如,自然數集N可表示為{1,2,3,…,n,…}.

2.描述法:一種更有效地描述集合的方法,是用集合中元素的特徵性質來描述。

例如:正偶數構成的集合,它的每一個元素都具有性質:“能被2整除,且大於0”

而這個集合外的其他元素都不具有這種性質,因此,我們可以用上述性質把正偶數集合表示為

{x∈R│x能被2整除,且大於0}或{x∈R│x=2n,n∈N+},

大括號內豎線左邊的X表示這個集合的任意一個元素,元素X從實數集合中取值,在豎線右邊寫出只有集合內的元素x才具有的性質。

一般地,如果在集合I中,屬於集合A的任意一個元素x都具有性質p(x),而不屬於集合A的元素都不具有的性質p(x),則性質p(x)叫做集合A的一個特徵性質。於是,集合A可以用它的性質p(x)描述為{x∈I│p(x)}

它表示集合A是由集合I中具有性質p(x)的所有元素構成的,這種表示集合的方法,叫做特徵性質描述法,簡稱描述法。

例如:集合A={x∈R│x2-1=0}的特徵是X2-1=0

高一數學知識點總結10

冪函式定義:

形如y=x^a(a為常數)的函式,即以底數為自變數冪為因變數,指數為常量的函式稱為冪函式。

定義域和值域:

當a為不同的數值時,冪函式的定義域的不同情況如下:如果a為任意實數,則函式的定義域為大於0的所有實數;如果a為負數,則x肯定不能為0,不過這時函式的定義域還必須根[據q的奇偶性來確定,即如果同時q為偶數,則x不能小於0,這時函式的定義域為大於0的所有實數;如果同時q為奇數,則函式的定義域為不等於0的所有實數。當x為不同的數值時,冪函式的值域的不同情況如下:在x大於0時,函式的值域總是大於0的實數。在x小於0時,則只有同時q為奇數,函式的值域為非零的實數。而只有a為正數,0才進入函式的值域

冪函式性質:

對於a的取值為非零有理數,有必要分成幾種情況來討論各自的特性:

首先我們知道如果a=p/q,q和p都是整數,則x^(p/q)=q次根號(x的p次方),如果q是奇數,函式的定義域是R,如果q是偶數,函式的定義域是[0,+∞)。當指數n是負整數時,設a=-k,則x=1/(x^k),顯然x≠0,函式的定義域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制來源於兩點,一是有可能作為分母而不能是0,一是有可能在偶數次的根號下而不能為負數,那麼我們就可以知道:

排除了為0與負數兩種可能,即對於x>0,則a可以是任意實數;

排除了為0這種可能,即對於x

排除了為負數這種可能,即對於x為大於且等於0的所有實數,a就不能是負數。

總結起來,就可以得到當a為不同的數值時,冪函式的定義域的不同情況如下:

如果a為任意實數,則函式的定義域為大於0的所有實數;

如果a為負數,則x肯定不能為0,不過這時函式的定義域還必須根據q的奇偶性來確定,即如果同時q為偶數,則x不能小於0,這時函式的定義域為大於0的所有實數;如果同時q為奇數,則函式的定義域為不等於0的所有實數。

在x大於0時,函式的值域總是大於0的實數。

在x小於0時,則只有同時q為奇數,函式的值域為非零的實數。

而只有a為正數,0才進入函式的值域。

由於x大於0是對a的任意取值都有意義的,因此下面給出冪函式在第一象限的各自情況.

可以看到:

(1)所有的圖形都透過(1,1)這點。

(2)當a大於0時,冪函式為單調遞增的,而a小於0時,冪函式為單調遞減函式。

(3)當a大於1時,冪函式圖形下凹;當a小於1大於0時,冪函式圖形上凸。

(4)當a小於0時,a越小,圖形傾斜程度越大。

(5)a大於0,函式過(0,0);a小於0,函式不過(0,0)點。

(6)顯然冪函式無界。

高一數學知識點總結11

1.知識網路圖

複數知識點網路圖

2.複數中的難點

(1)複數的向量表示法的運算.對於複數的向量表示有些學生掌握得不好,對向量的運算的幾何意義的靈活掌握有一定的困難.對此應認真體會複數向量運算的幾何意義,對其靈活地加以證明.

(2)複數三角形式的乘方和開方.有部分學生對運演算法則知道,但對其靈活地運用有一定的困難,特別是開方運算,應對此認真地加以訓練.

(3)複數的輻角主值的求法.

(4)利用複數的幾何意義靈活地解決問題.複數可以用向量表示,同時複數的模和輻角都具有幾何意義,對他們的理解和應用有一定難度,應認真加以體會.

3.複數中的重點

(1)理解好複數的概念,弄清實數、虛數、純虛數的不同點.

(2)熟練掌握複數三種表示法,以及它們間的互化,並能準確地求出複數的模和輻角.複數有代數,向量和三角三種表示法.特別是代數形式和三角形式的互化,以及求複數的模和輻角在解決具體問題時經常用到,是一個重點內容.

(3)複數的三種表示法的各種運算,在運算中重視共軛複數以及模的有關性質.複數的運算是複數中的主要內容,掌握複數各種形式的運算,特別是複數運算的幾何意義更是重點內容.

(4)複數集中一元二次方程和二項方程的解法.

高一數學知識點總結12

集合與元素

一個東西是集合還是元素並不是絕對的,很多情況下是相對的,集合是由元素組成的集合,元素是組成集合的元素。

例如:你所在的班級是一個集合,是由幾十個和你同齡的同學組成的集合,你相對於這個班級集合來說,是它的一個元素;

而整個學校又是由許許多多個班級組成的集合,你所在的班級只是其中的一分子,是一個元素。

班級相對於你是集合,相對於學校是元素,參照物不同,得到的結論也不同,可見,是集合還是元素,並不是絕對的。

.解集合問題的關鍵

解集合問題的關鍵:弄清集合是由哪些元素所構成的,也就是將抽象問題具體化、形象化,將特徵性質描述法表示的集合用列舉法來表示,或用韋恩圖來表示抽象的集合,或用圖形來表示集合;比如用數軸來表示集合,或是集合的元素為有序實數對時,可用平面直角座標系中的圖形表示相關的集合等。

高一數學知識點總結13

考點要求:

1、幾何體的展開圖、幾何體的三檢視仍是高考的熱點。

2、三檢視和其他的知識點結合在一起命題是新教材中考查學生三檢視及幾何量計算的趨勢。

3、重點掌握以三檢視為命題背景,研究空間幾何體的結構特徵的題型。

4、要熟悉一些典型的幾何體模型,如三稜柱、長(正)方體、三稜錐等幾何體的三檢視。

知識結構:

1、多面體的結構特徵

(1)稜柱有兩個面相互平行,其餘各面都是平行四邊形,每相鄰兩個四邊形的公共邊平行。

正稜柱:側稜垂直於底面的稜柱叫做直稜柱,底面是正多邊形的直稜柱叫做正稜柱。反之,正稜柱的底面是正多邊形,側稜垂直於底面,側面是矩形。

(2)稜錐的底面是任意多邊形,側面是有一個公共頂點的三角形。

正稜錐:底面是正多邊形,頂點在底面的射影是底面正多邊形的中心的稜錐叫做正稜錐。特別地,各稜均相等的正三稜錐叫正四面體。反過來,正稜錐的底面是正多邊形,且頂點在底面的射影是底面正多邊形的中心。

(3)稜臺可由平行於底面的平面截稜錐得到,其上下底面是相似多邊形。

2、旋轉體的結構特徵

(1)圓柱可以由矩形繞一邊所在直線旋轉一週得到。

(2)圓錐可以由直角三角形繞一條直角邊所在直線旋轉一週得到。

(3)圓臺可以由直角梯形繞直角腰所在直線旋轉一週或等腰梯形繞上下底面中心所在直線旋轉半周得到,也可由平行於底面的平面截圓錐得到。

(4)球可以由半圓面繞直徑旋轉一週或圓面繞直徑旋轉半周得到。

3、空間幾何體的三檢視

空間幾何體的三檢視是用平行投影得到,這種投影下,與投影面平行的平面圖形留下的影子,與平面圖形的形狀和大小是全等和相等的,三檢視包括正檢視、側檢視、俯檢視。

三檢視的長度特徵:“長對正,寬相等,高平齊”,即正檢視和側檢視一樣高,正檢視和俯檢視一樣長,側檢視和俯檢視一樣寬。若相鄰兩物體的表面相交,表面的交線是它們的分界線,在三檢視中,要注意實、虛線的畫法。

4、空間幾何體的直觀圖

空間幾何體的直觀圖常用斜二測畫法來畫,基本步驟是:

(1)畫幾何體的底面

在已知圖形中取互相垂直的x軸、y軸,兩軸相交於點O,畫直觀圖時,把它們畫成對應的x′軸、y′軸,兩軸相交於點O′,且使∠x′O′y′=45°或135°,已知圖形中平行於x軸、y軸的線段,在直觀圖中平行於x′軸、y′軸。已知圖形中平行於x軸的線段,在直觀圖中長度不變,平行於y軸的線段,長度變為原來的一半。

(2)畫幾何體的高

在已知圖形中過O點作z軸垂直於xOy平面,在直觀圖中對應的z′軸,也垂直於x′O′y′平面,已知圖形中平行於z軸的線段,在直觀圖中仍平行於z′軸且長度不變。

高一數學知識點總結14

圓的方程定義:

圓的標準方程(x-a)2+(y-b)2=r2中,有三個引數a、b、r,即圓心座標為(a,b),只要求出a、b、r,這時圓的方程就被確定,因此確定圓方程,須三個獨立條件,其中圓心座標是圓的定位條件,半徑是圓的定形條件。

直線和圓的位置關係:

1.直線和圓位置關係的判定方法一是方程的觀點,即把圓的方程和直線的方程聯立成方程組,利用判別式Δ來討論位置關係.

①Δ>0,直線和圓相交.②Δ=0,直線和圓相切.③Δ<0,直線和圓相離.

方法二是幾何的觀點,即把圓心到直線的距離d和半徑R的大小加以比較.

①dR,直線和圓相離.

2.直線和圓相切,這類問題主要是求圓的切線方程.求圓的切線方程主要可分為已知斜率k或已知直線上一點兩種情況,而已知直線上一點又可分為已知圓上一點和圓外一點兩種情況.

3.直線和圓相交,這類問題主要是求弦長以及弦的中點問題.

切線的性質

⑴圓心到切線的距離等於圓的半徑;

⑵過切點的半徑垂直於切線;

⑶經過圓心,與切線垂直的直線必經過切點;

⑷經過切點,與切線垂直的直線必經過圓心;

當一條直線滿足

(1)過圓心;

(2)過切點;

(3)垂直於切線三個性質中的兩個時,第三個性質也滿足.

切線的判定定理

經過半徑的外端點並且垂直於這條半徑的直線是圓的切線.

切線長定理

從圓外一點作圓的兩條切線,兩切線長相等,圓心與這一點的連線平分兩條切線的夾角.

圓錐曲線性質:

一、圓錐曲線的定義

1.橢圓:到兩個定點的距離之和等於定長(定長大於兩個定點間的距離)的動點的軌跡叫做橢圓.

2.雙曲線:到兩個定點的距離的差的絕對值為定值(定值小於兩個定點的距離)的動點軌跡叫做雙曲線.即.

3.圓錐曲線的統一定義:到定點的距離與到定直線的距離的比e是常數的點的軌跡叫做圓錐曲線.當01時為雙曲線.

二、圓錐曲線的方程

1.橢圓:+=1(a>b>0)或+=1(a>b>0)(其中,a2=b2+c2)

2.雙曲線:-=1(a>0,b>0)或-=1(a>0,b>0)(其中,c2=a2+b2)

3.拋物線:y2=±2px(p>0),x2=±2py(p>0)

三、圓錐曲線的性質

1.橢圓:+=1(a>b>0)

(1)範圍:|x|≤a,|y|≤b(2)頂點:(±a,0),(0,±b)(3)焦點:(±c,0)(4)離心率:e=∈(0,1)(5)準線:x=±

2.雙曲線:-=1(a>0,b>0)(1)範圍:|x|≥a,y∈R(2)頂點:(±a,0)(3)焦點:(±c,0)(4)離心率:e=∈(1,+∞)(5)準線:x=±(6)漸近線:y=±x

3.拋物線:y2=2px(p>0)(1)範圍:x≥0,y∈R(2)頂點:(0,0)(3)焦點:(,0)(4)離心率:e=1(5)準線:x=-

高一數學知識點總結15

函式圖象知識歸納

(1)定義:在平面直角座標系中,以函式y=f(x),(x∈A)中的x為橫座標,函式值y為縱座標的點P(x,y)的函式C,叫做函式y=f(x),(x∈A)的圖象.C上每一點的座標(x,y)均滿足函式關係y=f(x),反過來,以滿足y=f(x)的每一組有序實數對x、y為座標的點(x,y),均在C上.

(2)畫法

A、描點法:

B、圖象變換法

常用變換方法有三種

1)平移變換

2)伸縮變換

3)對稱變換

4.高中數學函式區間的概念

(1)函式區間的分類:開區間、閉區間、半開半閉區間

(2)無窮區間

5.對映

一般地,設A、B是兩個非空的函式,如果按某一個確定的對應法則f,使對於函式A中的任意一個元素x,在函式B中都有確定的元素y與之對應,那麼就稱對應f:AB為從函式A到函式B的一個對映。記作“f(對應關係):A(原象)B(象)”

對於對映f:A→B來說,則應滿足:

(1)函式A中的每一個元素,在函式B中都有象,並且象是的;

(2)函式A中不同的元素,在函式B中對應的象可以是同一個;

(3)不要求函式B中的每一個元素在函式A中都有原象。

6.高中數學函式之分段函式

(1)在定義域的不同部分上有不同的解析表示式的函式。

(2)各部分的自變數的取值情況.

(3)分段函式的定義域是各段定義域的交集,值域是各段值域的並集.

補充:複合函式

如果y=f(u)(u∈M),u=g(x)(x∈A),則y=f[g(x)]=F(x)(x∈A)稱為f、g的複合函式。