高一數學知識點總結(集合15篇)
總結是指社會團體、企業單位和個人對某一階段的學習、工作或其完成情況加以回顧和分析,得出教訓和一些規律性認識的一種書面材料,它有助於我們尋找工作和事物發展的規律,從而掌握並運用這些規律,為此我們要做好回顧,寫好總結。你想知道總結怎麼寫嗎?下面是小編幫大家整理的高一數學知識點總結,僅供參考,希望能夠幫助到大家。
高一數學知識點總結1
集合間的基本關係
1。“包含”關係—子集
注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。
反之:集合A不包含於集合B,或集合B不包含集合A,記作AB或BA
2。“相等”關係:A=B(5≥5,且5≤5,則5=5)
例項:設A={x|x2—1=0}B={—1,1}“元素相同則兩集合相等”
即:①任何一個集合是它本身的子集。AA
②真子集:如果AB,且AB那就說集合A是集合B的真子集,記作AB(或BA)
③如果AB,BC,那麼AC
④如果AB同時BA那麼A=B
3。不含任何元素的集合叫做空集,記為Φ
規定:空集是任何集合的子集,空集是任何非空集合的真子集。
有n個元素的集合,含有2n個子集,2n—1個真子集
集合的運算
運算型別交集並集補集
定義由所有屬於A且屬於B的元素所組成的集合,叫做A,B的交集。記作AB(讀作‘A交B’),即AB={x|xA,且xB}。
由所有屬於集合A或屬於集合B的元素所組成的集合,叫做A,B的並集。記作:AB(讀作‘A並B’),即AB={x|xA,或xB})。
設S是一個集合,A是S的一個子集,由S中所有不屬於A的元素組成的集合,叫做S中子集A的補集(或餘集)
高一數學知識點總結2
1.函式的概念:設A、B是非空的數集,如果按照某個確定的對應關係f,使對於集合A中的任意一個數x,在集合B中都有唯一確定的數f(x)和它對應,那麼就稱f:A→B為從集合A到集合B的一個函式.記作:y=f(x),x∈A.其中,x叫做自變數,x的取值範圍A叫做函式的定義域;與x的值相對應的y值叫做函式值,函式值的集合{f(x)|x∈A}叫做函式的值域.
注意:2如果只給出解析式y=f(x),而沒有指明它的定義域,則函式的定義域即是指能使這個式子有意義的實數的集合;3函式的定義域、值域要寫成集合或區間的形式.
定義域補充
能使函式式有意義的實數x的集合稱為函式的定義域,求函式的定義域時列不等式組的主要依據是:(1)分式的分母不等於零;(2)偶次方根的被開方數不小於零;(3)對數式的真數必須大於零;(4)指數、對數式的底必須大於零且不等於1.(5)如果函式是由一些基本函式透過四則運算結合而成的.那麼,它的定義域是使各部分都有意義的x的值組成的集合.(6)指數為零底不可以等於零(6)實際問題中的函式的定義域還要保證實際問題有意義.
構成函式的三要素:定義域、對應關係和值域
再注意:(1)構成函式三個要素是定義域、對應關係和值域.由於值域是由定義域和對應關係決定的,所以,如果兩個函式的定義域和對應關係完全一致,即稱這兩個函式相等(或為同一函式)(2)兩個函式相等當且僅當它們的定義域和對應關係完全一致,而與表示自變數和函式值的字母無關。相同函式的判斷方法:①表示式相同;②定義域一致(兩點必須同時具備)
值域補充
(1)、函式的值域取決於定義域和對應法則,不論採取什麼方法求函式的值域都應先考慮其定義域.(2).應熟悉掌握一次函式、二次函式、指數、對數函式及各三角函式的值域,它是求解複雜函式值域的基礎。
3.函式圖象知識歸納
(1)定義:在平面直角座標系中,以函式y=f(x),(x∈A)中的x為橫座標,函式值y為縱座標的點P(x,y)的集合C,叫做函式y=f(x),(x∈A)的圖象.
C上每一點的座標(x,y)均滿足函式關係y=f(x),反過來,以滿足y=f(x)的每一組有序實數對x、y為座標的點(x,y),均在C上.即記為C={P(x,y)|y=f(x),x∈A}
圖象C一般的是一條光滑的連續曲線(或直線),也可能是由與任意平行與Y軸的直線最多隻有一個交點的若干條曲線或離散點組成。
(2)畫法
A、描點法:根據函式解析式和定義域,求出x,y的一些對應值並列表,以(x,y)為座標在座標系內描出相應的點P(x,y),最後用平滑的曲線將這些點連線起來.
B、圖象變換法(請參考必修4三角函式)
常用變換方法有三種,即平移變換、伸縮變換和對稱變換
(3)作用:
1、直觀的看出函式的性質;2、利用數形結合的方法分析解題的思路。提高解題的速度。
高一數學知識點總結3
知識點總結
本節知識包括函式的單調性、函式的奇偶性、函式的週期性、函式的最值、函式的對稱性和函式的圖象等知識點。函式的單調性、函式的奇偶性、函式的週期性、函式的最值、函式的對稱性是學習函式的圖象的基礎,函式的圖象是它們的綜合。所以理解了前面的幾個知識點,函式的圖象就迎刃而解了。
一、函式的單調性
1、函式單調性的定義
2、函式單調性的判斷和證明:(1)定義法 (2)複合函式分析法 (3)導數證明法 (4)圖象法
二、函式的奇偶性和週期性
1、函式的奇偶性和週期性的定義
2、函式的奇偶性的判定和證明方法
3、函式的週期性的判定方法
三、函式的圖象
1、函式圖象的作法 (1)描點法 (2)圖象變換法
2、圖象變換包括圖象:平移變換、伸縮變換、對稱變換、翻折變換。
常見考法
本節是段考和高考必不可少的考查內容,是段考和高考考查的重點和難點。選擇題、填空題和解答題都有,並且題目難度較大。在解答題中,它可以和高中數學的每一章聯合考查,多屬於拔高題。多考查函式的單調性、最值和圖象等。
誤區提醒
1、求函式的單調區間,必須先求函式的定義域,即遵循“函式問題定義域優先的原則”。
2、單調區間必須用區間來表示,不能用集合或不等式,單調區間一般寫成開區間,不必考慮端點問題。
3、在多個單調區間之間不能用“或”和“ ”連線,只能用逗號隔開。
4、判斷函式的奇偶性,首先必須考慮函式的定義域,如果函式的定義域不關於原點對稱,則函式一定是非奇非偶函式。
5、作函式的圖象,一般是首先化簡解析式,然後確定用描點法或圖象變換法作函式的圖象。
高一數學知識點總結4
冪函式的性質:
對於a的取值為非零有理數,有必要分成幾種情況來討論各自的特性:
首先我們知道如果a=p/q,q和p都是整數,則x^(p/q)=q次根號(x的p次方),如果q是奇數,函式的定義域是R,如果q是偶數,函式的定義域是[0,+∞)。當指數n是負整數時,設a=—k,則x=1/(x^k),顯然x≠0,函式的定義域是(—∞,0)∪(0,+∞)。因此可以看到x所受到的限制來源於兩點,一是有可能作為分母而不能是0,一是有可能在偶數次的根號下而不能為負數,那麼我們就可以知道:
排除了為0與負數兩種可能,即對於x>0,則a可以是任意實數;
排除了為0這種可能,即對於x<0x="">0的所有實數,q不能是偶數;
排除了為負數這種可能,即對於x為大於且等於0的所有實數,a就不能是負數。
總結起來,就可以得到當a為不同的數值時,冪函式的定義域的不同情況如下:如果a為任意實數,則函式的定義域為大於0的所有實數;
如果a為負數,則x肯定不能為0,不過這時函式的定義域還必須根據q的奇偶性來確定,即如果同時q為偶數,則x不能小於0,這時函式的定義域為大於0的所有實數;如果同時q為奇數,則函式的定義域為不等於0的所有實數。
在x大於0時,函式的值域總是大於0的實數。
在x小於0時,則只有同時q為奇數,函式的值域為非零的實數。
而只有a為正數,0才進入函式的值域。
由於x大於0是對a的任意取值都有意義的,因此下面給出冪函式在第一象限的各自情況。
可以看到:
(1)所有的圖形都透過(1,1)這點。
(2)當a大於0時,冪函式為單調遞增的,而a小於0時,冪函式為單調遞減函式。
(3)當a大於1時,冪函式圖形下凹;當a小於1大於0時,冪函式圖形上凸。
(4)當a小於0時,a越小,圖形傾斜程度越大。
(5)a大於0,函式過(0,0);a小於0,函式不過(0,0)點。
(6)顯然冪函式無界。
解題方法:換元法
解數學題時,把某個式子看成一個整體,用一個變數去代替它,從而使問題得到簡化,這種方法叫換元法。換元的實質是轉化,關鍵是構造元和設元,理論依據是等量代換,目的是變換研究物件,將問題移至新物件的知識背景中去研究,從而使非標準型問題標準化、複雜問題簡單化,變得容易處理。
換元法又稱輔助元素法、變數代換法。透過引進新的變數,可以把分散的條件聯絡起來,隱含的條件顯露出來,或者把條件與結論聯絡起來。或者變為熟悉的形式,把複雜的計算和推證簡化。
它可以化高次為低次、化分式為整式、化無理式為有理式、化超越式為代數式,在研究方程、不等式、函式、數列、三角等問題中有廣泛的應用。
高一數學知識點總結5
1.二次函式y=ax^2,y=a(x-h)^2,y=a(x-h)^2+k,y=ax^2+bx+c(各式中,a≠0)的圖象形狀相同,只是位置不同,它們的頂點座標及對稱軸如下表:
解析式
頂點座標
對稱軸
y=ax^2
(0,0)
x=0
y=a(x-h)^2
(h,0)
x=h
y=a(x-h)^2+k
(h,k)
x=h
y=ax^2+bx+c
(-b/2a,[4ac-b^2]/4a)
x=-b/2a
當h>0時,y=a(x-h)^2的圖象可由拋物線y=ax^2向右平行移動h個單位得到,
當h<0時,則向左平行移動|h|個單位得到.
當h>0,k>0時,將拋物線y=ax^2向右平行移動h個單位,再向上移動k個單位,就可以得到y=a(x-h)^2+k的圖象;
當h>0,k<0時,將拋物線y=ax^2向右平行移動h個單位,再向下移動|k|個單位可得到y=a(x-h)^2+k的圖象;
當h<0,k>0時,將拋物線向左平行移動|h|個單位,再向上移動k個單位可得到y=a(x-h)^2+k的圖象;
當h<0,k<0時,將拋物線向左平行移動|h|個單位,再向下移動|k|個單位可得到y=a(x-h)^2+k的圖象;
因此,研究拋物線y=ax^2+bx+c(a≠0)的圖象,透過配方,將一般式化為y=a(x-h)^2+k的形式,可確定其頂點座標、對稱軸,拋物線的大體位置就很清楚了.這給畫圖象提供了方便.
2.拋物線y=ax^2+bx+c(a≠0)的圖象:當a>0時,開口向上,當a<0時開口向下,對稱軸是直線x=-b/2a,頂點座標是(-b/2a,[4ac-b^2]/4a).
3.拋物線y=ax^2+bx+c(a≠0),若a>0,當x≤-b/2a時,y隨x的增大而減小;當x≥-b/2a時,y隨x的增大而增大.若a<0,當x≤-b/2a時,y隨x的增大而增大;當x≥-b/2a時,y隨x的增大而減小.
4.拋物線y=ax^2+bx+c的圖象與座標軸的交點:
(1)圖象與y軸一定相交,交點座標為(0,c);
(2)當△=b^2-4ac>0,圖象與x軸交於兩點A(x?,0)和B(x?,0),其中的x1,x2是一元二次方程ax^2+bx+c=0
(a≠0)的兩根.這兩點間的距離AB=|x?-x?|
當△=0.圖象與x軸只有一個交點;
當△<0.圖象與x軸沒有交點.當a>0時,圖象落在x軸的上方,x為任何實數時,都有y>0;當a<0時,圖象落在x軸的下方,x為任何實數時,都有y<0.
5.拋物線y=ax^2+bx+c的最值:如果a>0(a<0),則當x=-b/2a時,y最小(大)值=(4ac-b^2)/4a.
頂點的橫座標,是取得最值時的自變數值,頂點的縱座標,是最值的取值.
6.用待定係數法求二次函式的解析式
(1)當題給條件為已知圖象經過三個已知點或已知x、y的三對對應值時,可設解析式為一般形式:
y=ax^2+bx+c(a≠0).
(2)當題給條件為已知圖象的頂點座標或對稱軸時,可設解析式為頂點式:y=a(x-h)^2+k(a≠0).
(3)當題給條件為已知圖象與x軸的兩個交點座標時,可設解析式為兩根式:y=a(x-x?)(x-x?)(a≠0).
7.二次函式知識很容易與其它知識綜合應用,而形成較為複雜的綜合題目。因此,以二次函式知識為主的綜合性題目是中考的熱點考題,往往以大題形式出現.
高一數學知識點總結6
圓的方程定義:
圓的標準方程(x—a)2+(y—b)2=r2中,有三個引數a、b、r,即圓心座標為(a,b),只要求出a、b、r,這時圓的方程就被確定,因此確定圓方程,須三個獨立條件,其中圓心座標是圓的定位條件,半徑是圓的定形條件。
直線和圓的位置關係:
1、直線和圓位置關係的判定方法一是方程的觀點,即把圓的方程和直線的方程聯立成方程組,利用判別式Δ來討論位置關係。
①Δ>0,直線和圓相交。②Δ=0,直線和圓相切。③Δ<0,直線和圓相離。
方法二是幾何的觀點,即把圓心到直線的距離d和半徑R的大小加以比較。
①dR,直線和圓相離。
2、直線和圓相切,這類問題主要是求圓的切線方程。求圓的切線方程主要可分為已知斜率k或已知直線上一點兩種情況,而已知直線上一點又可分為已知圓上一點和圓外一點兩種情況。
3、直線和圓相交,這類問題主要是求弦長以及弦的中點問題。
切線的性質
⑴圓心到切線的距離等於圓的半徑;
⑵過切點的半徑垂直於切線;
⑶經過圓心,與切線垂直的直線必經過切點;
⑷經過切點,與切線垂直的直線必經過圓心;
當一條直線滿足
(1)過圓心;
(2)過切點;
(3)垂直於切線三個性質中的兩個時,第三個性質也滿足。
切線的判定定理
經過半徑的外端點並且垂直於這條半徑的直線是圓的切線。
切線長定理
從圓外一點作圓的兩條切線,兩切線長相等,圓心與這一點的連線平分兩條切線的夾角。
高一數學知識點總結7
元素與集合的關係有“屬於”與“不屬於”兩種。
集合與集合之間的關係
某些指定的物件集在一起就成為一個集合集合符號,含有有限個元素叫有限集,含有無限個元素叫無限集,空集是不含任何元素的集,記做Φ。空集是任何集合的子集,是任何非空集的真子集。任何集合是它本身的子集。子集,真子集都具有傳遞性。說明一下:如果集合A的所有元素同時都是集合B的元素,則A稱作是B的子集,寫作AB。若A是B的子集,且A不等於B,則A稱作是B的真子集,一般寫作AB。中學教材課本里將符號下加了一個≠符號,不要混淆,考試時還是要以課本為準。所有男人的集合是所有人的集合的真子集。
高一數學知識點總結8
一、集合有關概念
1.集合的含義
2.集合的中元素的三個特性:
(1)元素的確定性如:世界上的山
(2)元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y}
(3)元素的無序性:如:{a,b,c}和{a,c,b}是表示同一個集合
3.集合的表示:{…}如:{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}
(1)用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}
(2)集合的表示方法:列舉法與描述法。
注意:常用數集及其記法:
非負整數集(即自然數集)記作:N
正整數集:N_或N+
整數集:Z
有理數集:Q
實數集:R
1)列舉法:{a,b,c……}
2)描述法:將集合中的元素的公共屬性描述出來,寫在大括號內表示集合{xR|x-3>2},{x|x-3>2}
3)語言描述法:例:{不是直角三角形的三角形}
4)Venn圖:
4、集合的分類:
(1)有限集含有有限個元素的集合
(2)無限集含有無限個元素的集合
(3)空集不含任何元素的集合例:{x|x2=-5}
二、集合間的基本關係
1.“包含”關係—子集
注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。
反之:集合A不包含於集合B,或集合B不包含集合A,記作AB或BA
2.“相等”關係:A=B(5≥5,且5≤5,則5=5)
例項:設A={x|x2-1=0}B={-1,1}“元素相同則兩集合相等”
即:①任何一個集合是它本身的子集。AíA
②真子集:如果AíB,且A1B那就說集合A是集合B的真子集,記作AB(或BA)
③如果AíB,BíC,那麼AíC
④如果AíB同時BíA那麼A=B
3.不含任何元素的集合叫做空集,記為Φ
規定:空集是任何集合的子集,空集是任何非空集合的真子集。
4.子集個數:
有n個元素的集合,含有2n個子集,2n-1個真子集,含有2n-1個非空子集,含有2n-1個非空真子集
三、集合的運算
運算型別交集並集補集
定義由所有屬於A且屬於B的元素所組成的集合,叫做A,B的交集.記作AB(讀作‘A交B’),即AB={x|xA,且xB}.
由所有屬於集合A或屬於集合B的元素所組成的集合,叫做A,B的並集.記作:AB(讀作‘A並B’),即AB={x|xA,或xB}).
【基本初等函式】
一、指數函式
(一)指數與指數冪的運算
1.根式的概念:一般地,如果,那麼叫做的次方根(nthroot),其中>1,且∈_.
當是奇數時,正數的次方根是一個正數,負數的次方根是一個負數.此時,的次方根用符號表示.式子叫做根式(radical),這裡叫做根指數(radicalexponent),叫做被開方數(radicand).
當是偶數時,正數的次方根有兩個,這兩個數互為相反數.此時,正數的正的次方根用符號表示,負的次方根用符號-表示.正的次方根與負的次方根可以合併成±(>0).由此可得:負數沒有偶次方根;0的任何次方根都是0,記作。
注意:當是奇數時,當是偶數時,
2.分數指數冪
正數的分數指數冪的意義,規定:
0的正分數指數冪等於0,0的負分數指數冪沒有意義
指出:規定了分數指數冪的意義後,指數的概念就從整數指數推廣到了有理數指數,那麼整數指數冪的運算性質也同樣可以推廣到有理數指數冪.
3.實數指數冪的運算性質
(二)指數函式及其性質
1、指數函式的概念:一般地,函式叫做指數函式(exponential),其中x是自變數,函式的定義域為R.
注意:指數函式的底數的取值範圍,底數不能是負數、零和1.
2、指數函式的圖象和性質
【函式的應用】
1、函式零點的概念:對於函式,把使成立的實數叫做函式的零點。
2、函式零點的`意義:函式的零點就是方程實數根,亦即函式的圖象與軸交點的橫座標。即:
方程有實數根函式的圖象與軸有交點函式有零點.
3、函式零點的求法:
求函式的零點:
1(代數法)求方程的實數根;
2(幾何法)對於不能用求根公式的方程,可以將它與函式的圖象聯絡起來,並利用函式的性質找出零點.
4、二次函式的零點:
二次函式.
1)△>0,方程有兩不等實根,二次函式的圖象與軸有兩個交點,二次函式有兩個零點.
2)△=0,方程有兩相等實根(二重根),二次函式的圖象與軸有一個交點,二次函式有一個二重零點或二階零點.
3)△<0,方程無實根,二次函式的圖象與軸無交點,二次函式無零點.
高一數學知識點總結9
【立體幾何初步】
1、柱、錐、臺、球的結構特徵
(1)稜柱:
定義:有兩個面互相平行,其餘各面都是四邊形,且每相鄰兩個四邊形的公共邊都互相平行,由這些面所圍成的幾何體。
分類:以底面多邊形的邊數作為分類的標準分為三稜柱、四稜柱、五稜柱等。
表示:用各頂點字母,如五稜柱或用對角線的端點字母,如五稜柱。
幾何特徵:兩底面是對應邊平行的全等多邊形;側面、對角面都是平行四邊形;側稜平行且相等;平行於底面的截面是與底面全等的多邊形。
(2)稜錐
定義:有一個面是多邊形,其餘各面都是有一個公共頂點的三角形,由這些面所圍成的幾何體。
分類:以底面多邊形的邊數作為分類的標準分為三稜錐、四稜錐、五稜錐等
表示:用各頂點字母,如五稜錐
幾何特徵:側面、對角面都是三角形;平行於底面的截面與底面相似,其相似比等於頂點到截面距離與高的比的平方。
(3)稜臺:
定義:用一個平行於稜錐底面的平面去截稜錐,截面和底面之間的部分。
分類:以底面多邊形的邊數作為分類的標準分為三稜態、四稜臺、五稜臺等
表示:用各頂點字母,如五稜臺
幾何特徵:①上下底面是相似的平行多邊形②側面是梯形③側稜交於原稜錐的頂點
(4)圓柱:
定義:以矩形的一邊所在的直線為軸旋轉,其餘三邊旋轉所成的曲面所圍成的幾何體。
幾何特徵:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側面展開圖是一個矩形。
(5)圓錐:
定義:以直角三角形的一條直角邊為旋轉軸,旋轉一週所成的曲面所圍成的幾何體。
幾何特徵:①底面是一個圓;②母線交於圓錐的頂點;③側面展開圖是一個扇形。
(6)圓臺:
定義:用一個平行於圓錐底面的平面去截圓錐,截面和底面之間的部分
幾何特徵:①上下底面是兩個圓;②側面母線交於原圓錐的頂點;③側面展開圖是一個弓形。
(7)球體:
定義:以半圓的直徑所在直線為旋轉軸,半圓面旋轉一週形成的幾何體
幾何特徵:①球的截面是圓;②球面上任意一點到球心的距離等於半徑。
2、空間幾何體的三檢視
定義三檢視:正檢視(光線從幾何體的前面向後面正投影);側檢視(從左向右)、俯檢視(從上向下)
注:正檢視反映了物體上下、左右的位置關係,即反映了物體的高度和長度;
俯檢視反映了物體左右、前後的位置關係,即反映了物體的長度和寬度;
側檢視反映了物體上下、前後的位置關係,即反映了物體的高度和寬度。
3、空間幾何體的直觀圖——斜二測畫法
斜二測畫法特點:
①原來與x軸平行的線段仍然與x平行且長度不變;
②原來與y軸平行的線段仍然與y平行,長度為原來的一半。
高一數學知識點總結10
一:函式及其表示
知識點詳解文件包含函式的概念、對映、函式關係的判斷原則、函式區間、函式的三要素、函式的定義域、求具體或抽象數值的函式值、求函式值域、函式的表示方法等
1. 函式與對映的區別:
2. 求函式定義域
常見的用解析式表示的函式f(x)的定義域可以歸納如下:
①當f(x)為整式時,函式的定義域為R.
②當f(x)為分式時,函式的定義域為使分式分母不為零的實數集合。
③當f(x)為偶次根式時,函式的定義域是使被開方數不小於0的實數集合。
④當f(x)為對數式時,函式的定義域是使真數為正、底數為正且不為1的實數集合。
⑤如果f(x)是由幾個部分的數學式子構成的,那麼函式定義域是使各部分式子都有意義的實數集合,即求各部分有意義的實數集合的交集。
⑥複合函式的定義域是複合的各基本的函式定義域的交集。
⑦對於由實際問題的背景確定的函式,其定義域除上述外,還要受實際問題的制約。
3. 求函式值域
(1)、觀察法:透過對函式定義域、性質的觀察,結合函式的解析式,求得函式的值域;
(2)、配方法;如果一個函式是二次函式或者經過換元可以寫成二次函式的形式,那麼將這個函式的右邊配方,透過自變數的範圍可以求出該函式的值域;
(3)、判別式法:
(4)、數形結合法;透過觀察函式的圖象,運用數形結合的方法得到函式的值域;
(5)、換元法;以新變數代替函式式中的某些量,使函式轉化為以新變數為自變數的函式形式,進而求出值域;
(6)、利用函式的單調性;如果函式在給出的定義域區間上是嚴格單調的,那麼就可以利用端點的函式值來求出值域;
(7)、利用基本不等式:對於一些特殊的分式函式、高於二次的函式可以利用重要不等式求出函式的值域;
(8)、最值法:對於閉區間[a,b]上的連續函式y=f(x),可求出y=f(x)在區間[a,b]內的極值,並與邊界值f(a).f(b)作比較,求出函式的最值,可得到函式y的值域;
(9)、反函式法:如果函式在其定義域記憶體在反函式,那麼求函式的值域可以轉化為求反函式的定義域。
高一數學知識點總結11
【(一)、對映、函式、反函式】
1、對應、對映、函式三個概念既有共性又有區別,對映是一種特殊的對應,而函式又是一種特殊的對映.
2、對於函式的概念,應注意如下幾點:
(1)掌握構成函式的三要素,會判斷兩個函式是否為同一函式.
(2)掌握三種表示法——列表法、解析法、圖象法,能根實際問題尋求變數間的函式關係式,特別是會求分段函式的解析式.
(3)如果y=f(u),u=g(x),那麼y=f[g(x)]叫做f和g的複合函式,其中g(x)為內函式,f(u)為外函式.
3、求函式y=f(x)的反函式的一般步驟:
(1)確定原函式的值域,也就是反函式的定義域;
(2)由y=f(x)的解析式求出x=f-1(y);
(3)將x,y對換,得反函式的習慣表示式y=f-1(x),並註明定義域.
注意①:對於分段函式的反函式,先分別求出在各段上的反函式,然後再合併到一起.
②熟悉的應用,求f-1(x0)的值,合理利用這個結論,可以避免求反函式的過程,從而簡化運算.
【(二)、函式的解析式與定義域】
1、函式及其定義域是不可分割的整體,沒有定義域的函式是不存在的,因此,要正確地寫出函式的解析式,必須是在求出變數間的對應法則的同時,求出函式的定義域.求函式的定義域一般有三種類型:
(1)有時一個函式來自於一個實際問題,這時自變數x有實際意義,求定義域要結合實際意義考慮;
(2)已知一個函式的解析式求其定義域,只要使解析式有意義即可.如:
①分式的分母不得為零;
②偶次方根的被開方數不小於零;
③對數函式的真數必須大於零;
④指數函式和對數函式的底數必須大於零且不等於1;
⑤三角函式中的正切函式y=tanx(x∈R,且k∈Z),餘切函式y=cotx(x∈R,x≠kπ,k∈Z)等.
應注意,一個函式的解析式由幾部分組成時,定義域為各部分有意義的自變數取值的公共部分(即交集).
(3)已知一個函式的定義域,求另一個函式的定義域,主要考慮定義域的深刻含義即可.
已知f(x)的定義域是[a,b],求f[g(x)]的定義域是指滿足a≤g(x)≤b的x的取值範圍,而已知f[g(x)]的定義域[a,b]指的是x∈[a,b],此時f(x)的定義域,即g(x)的值域.
2、求函式的解析式一般有四種情況
(1)根據某實際問題需建立一種函式關係時,必須引入合適的變數,根據數學的有關知識尋求函式的解析式.
(2)有時題設給出函式特徵,求函式的解析式,可採用待定係數法.比如函式是一次函式,可設f(x)=ax+b(a≠0),其中a,b為待定係數,根據題設條件,列出方程組,求出a,b即可.
(3)若題設給出複合函式f[g(x)]的表示式時,可用換元法求函式f(x)的表示式,這時必須求出g(x)的值域,這相當於求函式的定義域.
(4)若已知f(x)滿足某個等式,這個等式除f(x)是未知量外,還出現其他未知量(如f(-x),等),必須根據已知等式,再構造其他等式組成方程組,利用解方程組法求出f(x)的表示式.
【(三)、函式的值域與最值】
1、函式的值域取決於定義域和對應法則,不論採用何種方法求函式值域都應先考慮其定義域,求函式值域常用方法如下:
(1)直接法:亦稱觀察法,對於結構較為簡單的函式,可由函式的解析式應用不等式的性質,直接觀察得出函式的值域.
(2)換元法:運用代數式或三角換元將所給的複雜函式轉化成另一種簡單函式再求值域,若函式解析式中含有根式,當根式裡一次式時用代數換元,當根式裡是二次式時,用三角換元.
(3)反函式法:利用函式f(x)與其反函式f-1(x)的定義域和值域間的關係,透過求反函式的定義域而得到原函式的值域,形如(a≠0)的函式值域可採用此法求得.
(4)配方法:對於二次函式或二次函式有關的函式的值域問題可考慮用配方法.
(5)不等式法求值域:利用基本不等式a+b≥[a,b∈(0,+∞)]可以求某些函式的值域,不過應注意條件“一正二定三相等”有時需用到平方等技巧.
(6)判別式法:把y=f(x)變形為關於x的一元二次方程,利用“△≥0”求值域.其題型特徵是解析式中含有根式或分式.
(7)利用函式的單調性求值域:當能確定函式在其定義域上(或某個定義域的子集上)的單調性,可採用單調性法求出函式的值域.
(8)數形結合法求函式的值域:利用函式所表示的幾何意義,藉助於幾何方法或圖象,求出函式的值域,即以數形結合求函式的值域.
2、求函式的最值與值域的區別和聯絡
求函式最值的常用方法和求函式值域的方法基本上是相同的,事實上,如果在函式的值域中存在一個最小(大)數,這個數就是函式的最小(大)值.因此求函式的最值與值域,其實質是相同的,只是提問的角度不同,因而答題的方式就有所相異.
如函式的值域是(0,16],值是16,無最小值.再如函式的值域是(-∞,-2]∪[2,+∞),但此函式無值和最小值,只有在改變函式定義域後,如x>0時,函式的最小值為2.可見定義域對函式的值域或最值的影響.
3、函式的最值在實際問題中的應用
函式的最值的應用主要體現在用函式知識求解實際問題上,從文字表述上常常表現為“工程造價最低”,“利潤”或“面積(體積)(最小)”等諸多現實問題上,求解時要特別關注實際意義對自變數的制約,以便能正確求得最值.
【(四)、函式的奇偶性】
1、函式的奇偶性的定義:對於函式f(x),如果對於函式定義域內的任意一個x,都有f(-x)=-f(x)(或f(-x)=f(x)),那麼函式f(x)就叫做奇函式(或偶函式).
正確理解奇函式和偶函式的定義,要注意兩點:(1)定義域在數軸上關於原點對稱是函式f(x)為奇函式或偶函式的必要不充分條件;(2)f(x)=-f(x)或f(-x)=f(x)是定義域上的恆等式.(奇偶性是函式定義域上的整體性質).
2、奇偶函式的定義是判斷函式奇偶性的主要依據。為了便於判斷函式的奇偶性,有時需要將函式化簡或應用定義的等價形式:
注意如下結論的運用:
(1)不論f(x)是奇函式還是偶函式,f(|x|)總是偶函式;
(2)f(x)、g(x)分別是定義域D1、D2上的奇函式,那麼在D1∩D2上,f(x)+g(x)是奇函式,f(x)·g(x)是偶函式,類似地有“奇±奇=奇”“奇×奇=偶”,“偶±偶=偶”“偶×偶=偶”“奇×偶=奇”;
(3)奇偶函式的複合函式的奇偶性通常是偶函式;
(4)奇函式的導函式是偶函式,偶函式的導函式是奇函式。
3、有關奇偶性的幾個性質及結論
(1)一個函式為奇函式的充要條件是它的圖象關於原點對稱;一個函式為偶函式的充要條件是它的圖象關於y軸對稱.
(2)如要函式的定義域關於原點對稱且函式值恆為零,那麼它既是奇函式又是偶函式.
(3)若奇函式f(x)在x=0處有意義,則f(0)=0成立.
(4)若f(x)是具有奇偶性的區間單調函式,則奇(偶)函式在正負對稱區間上的單調性是相同(反)的。
(5)若f(x)的定義域關於原點對稱,則F(x)=f(x)+f(-x)是偶函式,G(x)=f(x)-f(-x)是奇函式.
(6)奇偶性的推廣
函式y=f(x)對定義域內的任一x都有f(a+x)=f(a-x),則y=f(x)的圖象關於直線x=a對稱,即y=f(a+x)為偶函式.函式y=f(x)對定義域內的任-x都有f(a+x)=-f(a-x),則y=f(x)的圖象關於點(a,0)成中心對稱圖形,即y=f(a+x)為奇函式。
【(五)、函式的單調性】
1、單調函式
對於函式f(x)定義在某區間[a,b]上任意兩點x1,x2,當x1>x2時,都有不等式f(x1)>(或<)f(x2)成立,稱f(x)在[a,b]上單調遞增(或遞減);增函式或減函式統稱為單調函式.
對於函式單調性的定義的理解,要注意以下三點:
(1)單調性是與“區間”緊密相關的概念.一個函式在不同的區間上可以有不同的單調性.
(2)單調性是函式在某一區間上的“整體”性質,因此定義中的x1,x2具有任意性,不能用特殊值代替.
(3)單調區間是定義域的子集,討論單調性必須在定義域範圍內.
(4)注意定義的兩種等價形式:
設x1、x2∈[a,b],那麼:
①在[a、b]上是增函式;
在[a、b]上是減函式.
②在[a、b]上是增函式.
在[a、b]上是減函式.
需要指出的是:①的幾何意義是:增(減)函式圖象上任意兩點(x1,f(x1))、(x2,f(x2))連線的斜率都大於(或小於)零.
(5)由於定義都是充要性命題,因此由f(x)是增(減)函式,且(或x1>x2),這說明單調性使得自變數間的不等關係和函式值之間的不等關係可以“正逆互推”.
5、複合函式y=f[g(x)]的單調性
若u=g(x)在區間[a,b]上的單調性,與y=f(u)在[g(a),g(b)](或g(b),g(a))上的單調性相同,則複合函式y=f[g(x)]在[a,b]上單調遞增;否則,單調遞減.簡稱“同增、異減”.
在研究函式的單調性時,常需要先將函式化簡,轉化為討論一些熟知函式的單調性。因此,掌握並熟記一次函式、二次函式、指數函式、對數函式的單調性,將大大縮短我們的判斷過程.
6、證明函式的單調性的方法
(1)依定義進行證明.其步驟為:①任取x1、x2∈M且x1(或<)f(x2);③根據定義,得出結論.
(2)設函式y=f(x)在某區間內可導.
如果f′(x)>0,則f(x)為增函式;如果f′(x)<0,則f(x)為減函式.
【(六)、函式的圖象】
函式的圖象是函式的直觀體現,應加強對作圖、識圖、用圖能力的培養,培養用數形結合的思想方法解決問題的意識.
求作圖象的函式表示式
與f(x)的關係
由f(x)的圖象需經過的變換
y=f(x)±b(b>0)
沿y軸向平移b個單位
y=f(x±a)(a>0)
沿x軸向平移a個單位
y=-f(x)
作關於x軸的對稱圖形
y=f(|x|)
右不動、左右關於y軸對稱
y=|f(x)|
上不動、下沿x軸翻折
y=f-1(x)
作關於直線y=x的對稱圖形
y=f(ax)(a>0)
橫座標縮短到原來的,縱座標不變
y=af(x)
縱座標伸長到原來的|a|倍,橫座標不變
y=f(-x)
作關於y軸對稱的圖形
【例】定義在實數集上的函式f(x),對任意x,y∈R,有f(x+y)+f(x-y)=2f(x)·f(y),且f(0)≠0.
①求證:f(0)=1;
②求證:y=f(x)是偶函式;
③若存在常數c,使求證對任意x∈R,有f(x+c)=-f(x)成立;試問函式f(x)是不是週期函式,如果是,找出它的一個週期;如果不是,請說明理由.
思路分析:我們把沒有給出解析式的函式稱之為抽象函式,解決這類問題一般採用賦值法.
解答:①令x=y=0,則有2f(0)=2f2(0),因為f(0)≠0,所以f(0)=1.
②令x=0,則有f(x)+f(-y)=2f(0)·f(y)=2f(y),所以f(-y)=f(y),這說明f(x)為偶函式.
③分別用(c>0)替換x、y,有f(x+c)+f(x)=
所以,所以f(x+c)=-f(x).
兩邊應用中的結論,得f(x+2c)=-f(x+c)=-[-f(x)]=f(x),
所以f(x)是週期函式,2c就是它的一個週期.
高一數學知識點總結12
圓的方程定義:
圓的標準方程(x—a)2+(y—b)2=r2中,有三個引數a、b、r,即圓心座標為(a,b),只要求出a、b、r,這時圓的方程就被確定,因此確定圓方程,須三個獨立條件,其中圓心座標是圓的定位條件,半徑是圓的定形條件。
直線和圓的位置關係:
1、直線和圓位置關係的判定方法一是方程的觀點,即把圓的方程和直線的方程聯立成方程組,利用判別式Δ來討論位置關係。
①Δ>0,直線和圓相交、②Δ=0,直線和圓相切、③Δ<0,直線和圓相離。
方法二是幾何的觀點,即把圓心到直線的距離d和半徑R的大小加以比較。
①dR,直線和圓相離、
2、直線和圓相切,這類問題主要是求圓的切線方程、求圓的切線方程主要可分為已知斜率k或已知直線上一點兩種情況,而已知直線上一點又可分為已知圓上一點和圓外一點兩種情況。
3、直線和圓相交,這類問題主要是求弦長以及弦的中點問題。
切線的性質
⑴圓心到切線的距離等於圓的半徑;
⑵過切點的半徑垂直於切線;
⑶經過圓心,與切線垂直的直線必經過切點;
⑷經過切點,與切線垂直的直線必經過圓心;
當一條直線滿足
(1)過圓心;
(2)過切點;
(3)垂直於切線三個性質中的兩個時,第三個性質也滿足。
切線的判定定理
經過半徑的外端點並且垂直於這條半徑的直線是圓的切線。
切線長定理
從圓外一點作圓的兩條切線,兩切線長相等,圓心與這一點的連線平分兩條切線的夾角。
高一數學知識點總結13
(1)指數函式的定義域為所有實數的集合,這裡的前提是a大於0,對於a不大於0的情況,則必然使得函式的定義域不存在連續的區間,因此我們不予考慮。
(2)指數函式的值域為大於0的實數集合。
(3)函式圖形都是下凹的。
(4)a大於1,則指數函式單調遞增;a小於1大於0,則為單調遞減的。
(5)可以看到一個顯然的規律,就是當a從0趨向於無窮大的過程中(當然不能等於0),函式的曲線從分別接近於Y軸與X軸的正半軸的單調遞減函式的位置,趨向分別接近於Y軸的正半軸與X軸的負半軸的單調遞增函式的位置。其中水平直線y=1是從遞減到遞增的一個過渡位置。
(6)函式總是在某一個方向上無限趨向於X軸,永不相交。
(7)函式總是透過(0,1)這點。
(8)顯然指數函式無界。
奇偶性
定義
一般地,對於函式f(x)
(1)如果對於函式定義域內的任意一個x,都有f(-x)=-f(x),那麼函式f(x)就叫做奇函式。
(2)如果對於函式定義域內的任意一個x,都有f(-x)=f(x),那麼函式f(x)就叫做偶函式。
(3)如果對於函式定義域內的任意一個x,f(-x)=-f(x)與f(-x)=f(x)同時成立,那麼函式f(x)既是奇函式又是偶函式,稱為既奇又偶函式。
(4)如果對於函式定義域內的任意一個x,f(-x)=-f(x)與f(-x)=f(x)都不能成立,那麼函式f(x)既不是奇函式又不是偶函式,稱為非奇非偶函式。
對於a的取值為非零有理數,有必要分成幾種情況來討論各自的特性:
首先我們知道如果a=p/q,q和p都是整數,則x^(p/q)=q次根號(x的p次方),如果q是奇數,函式的定義域是R,如果q是偶數,函式的定義域是[0,+∞)。當指數n是負整數時,設a=-k,則x=1/(x^k),顯然x≠0,函式的定義域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制來源於兩點,一是有可能作為分母而不能是0,一是有可能在偶數次的根號下而不能為負數,那麼我們就可以知道:
排除了為0與負數兩種可能,即對於x>0,則a可以是任意實數;
排除了為0這種可能,即對於x<0和x>0的所有實數,q不能是偶數;
排除了為負數這種可能,即對於x為大於且等於0的所有實數,a就不能是負數。
總結起來,就可以得到當a為不同的數值時,冪函式的定義域的不同情況如下:如果a為任意實數,則函式的定義域為大於0的所有實數;
如果a為負數,則x肯定不能為0,不過這時函式的定義域還必須根據q的奇偶性來確定,即如果同時q為偶數,則x不能小於0,這時函式的定義域為大於0的所有實數;如果同時q為奇數,則函式的定義域為不等於0的所有實數。
在x大於0時,函式的值域總是大於0的實數。
在x小於0時,則只有同時q為奇數,函式的值域為非零的實數。
而只有a為正數,0才進入函式的值域。
由於x大於0是對a的任意取值都有意義的,因此下面給出冪函式在第一象限的各自情況.
可以看到:
(1)所有的圖形都透過(1,1)這點。
(2)當a大於0時,冪函式為單調遞增的,而a小於0時,冪函式為單調遞減函式。
(3)當a大於1時,冪函式圖形下凹;當a小於1大於0時,冪函式圖形上凸。
(4)當a小於0時,a越小,圖形傾斜程度越大。
(5)a大於0,函式過(0,0);a小於0,函式不過(0,0)點。
(6)顯然冪函式無界。
定義:
x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當直線與x軸平行或重合時,我們規定它的傾斜角為0度。
範圍:
傾斜角的取值範圍是0°≤α<180°。
理解:
(1)注意“兩個方向”:直線向上的方向、x軸的正方向;
(2)規定當直線和x軸平行或重合時,它的傾斜角為0度。
意義:
①直線的傾斜角,體現了直線對x軸正向的傾斜程度;
②在平面直角座標系中,每一條直線都有一個確定的傾斜角;
③傾斜角相同,未必表示同一條直線。
公式:
k=tanα
k>0時α∈(0°,90°)
k<0時α∈(90°,180°)
k=0時α=0°
當α=90°時k不存在
ax+by+c=0(a≠0)傾斜角為A,
則tanA=-a/b,
A=arctan(-a/b)
當a≠0時,
傾斜角為90度,即與X軸垂直
高一數學知識點總結14
一、平面解析幾何的基本思想和主要問題
平面解析幾何是用代數的方法研究幾何問題的一門數學學科,其基本思想就是用代數的方法研究幾何問題。例如,用直線的方程可以研究直線的性質,用兩條直線的方程可以研究這兩條直線的位置關係等。
平面解析幾何研究的問題主要有兩類:一是根據已知條件,求出表示平面曲線的方程;二是透過方程,研究平面曲線的性質。
二、直線座標系和直角座標系
直線座標系,也就是數軸,它有三個要素:原點、度量單位和方向。如果讓一個實數與數軸上座標為的點對應,那麼就可以在實數集與數軸上的點集之間建立一一對應關係。
點與實數對應,則稱點的座標為,記作,如點座標為,則記作;點座標為,則記為。
直角座標系是由兩條互相垂直且有公共原點的數軸組成,兩條數軸的度量單位一般相同,但有時也可以不同,兩個數軸的交點是直角座標系的原點。在平面直角座標系中,有序實數對構成的集合與座標平面內的點集具有一一對應關係。
一個點的座標是這樣求得的,由點向軸及軸作垂線,在兩座標軸上形成正投影,在軸上的正投影所對應的值為點的橫座標,在軸上的正投影所對應的值為點的縱座標。
在學習這兩種座標系時,要注意用類比的方法。例如,平面直角座標系是二維座標系,它有兩個座標軸,每個點的座標需用兩個實數(即一對有序實數)來表示,而直線座標系是一維座標系,它只有一個座標軸,每個點的座標只需用一個實數來表示。
三、向量的有關概念和公式
如果數軸上的任意一點沿著軸的正向或負向移動到另一個點,則說點在軸上作了一次位移。位移是一個既有大小又有方向的量,通常叫做位移向量,簡稱向量,記作。如果點移動的方向與數軸的正方向相同,則向量為正,否則為負。線段的長叫做向量的長度,記作。向量的長度連同表示其方向的正負號叫做向量的座標(或數量),用表示。這裡同學們要分清,,三個符號的含義。
對於數軸上任意三點,都有成立。該等式左邊表示在數軸上點向點作一次位移,等式右邊表示點先向點作一次位移,再由點向點作一次位移,它們的最終結果是相同的。
向量的座標公式(或數量公式),它表示向量的數量等於終點的座標減去起點的座標,這個公式非常重要。
有相等座標的兩個向量相等,看做同一個向量;反之,兩個相等向量座標必相等。
注意:①相等的所有向量看做一個整體,作為同一向量,都等於以原點為起點,座標與這所有向量相等的那個向量。②向量與數軸上的實數(或點)是一一對應的,零向量即原點。
四、兩點的距離公式和中點公式
1。對於數軸上的兩點,設它們的座標分別為,,則的距離為,的中點的座標為。
由於表示數軸上兩點與的距離,所以在解一些簡單的含絕對值的方程或不等式時,常藉助於數形結合思想,將問題轉化為數軸上的距離問題加以解決。例如,解方程時,可以將問題看作在數軸上求一點,使它到,的距離之和等於。
2。對於直角座標系中的兩點,設它們的座標分別為,,則兩點的距離為,的中點的座標滿足。
兩點的距離公式和中點公式是解析幾何中最基本、最常用的公式之一,要求同學們能熟練掌握並能靈活運用。
五、座標法
座標法是數學中一種重要的數學思想方法,它是藉助於座標系來研究幾何圖形的一種方法,是數形結合的典範。這種方法是在平面上建立直角座標系,用座標表示點,把曲線看成滿足某種條件的點的集合或軌跡,用曲線上點的座標所滿足的方程表示曲線,透過研究方程,間接地來研究曲線的性質。
高一數學知識點總結15
函式圖象知識歸納
(1)定義:在平面直角座標系中,以函式y=f(x),(x∈A)中的x為橫座標,函式值y為縱座標的點P(x,y)的集合C,叫做函式y=f(x),(x∈A)的圖象。
C上每一點的座標(x,y)均滿足函式關係y=f(x),反過來,以滿足y=f(x)的每一組有序實數對x、y為座標的點(x,y),均在C上。即記為C={P(x,y)|y=f(x),x∈A}
圖象C一般的是一條光滑的連續曲線(或直線),也可能是由與任意平行與Y軸的直線最多隻有一個交點的若干條曲線或離散點組成。
(2)畫法
A、描點法:根據函式解析式和定義域,求出x,y的一些對應值並列表,以(x,y)為座標在座標系內描出相應的點P(x,y),最後用平滑的曲線將這些點連線起來。
B、圖象變換法(請參考必修4三角函式)
常用變換方法有三種,即平移變換、伸縮變換和對稱變換
(3)作用:
1、直觀的看出函式的性質;2、利用數形結合的方法分析解題的思路。提高解題的速度。