1. 首頁
  2. 總結範文

八年級數學全等三角形的的知識點總結

八年級數學全等三角形的的知識點總結

全等三角形:兩個三角形的形狀、大小、都一樣時,其中一個可以經過平移、旋轉、對稱等運動(或稱變換)使之與另一個重合,這兩個三角形稱為全等三角形。

2.全等三角形的性質:全等三角形的對應角相等、對應邊相等。

3.三角形全等的判定公理及推論有:

(1)“邊角邊”簡稱“SAS”

(2)“角邊角”簡稱“ASA”

(3)“邊邊邊”簡稱“SSS”

(4)“角角邊”簡稱“AAS”

(5)斜邊和直角邊相等的兩直角三角形(HL)。

4.角平分線推論:角的內部到角的兩邊的'距離相等的點在叫的平分線上。

5.證明兩三角形全等或利用它證明線段或角的相等的基本方法步驟:

①、確定已知條件(包括隱含條件,如公共邊、公共角、對頂角、角平分線、中線、高、等腰三角形、等所隱含的邊角關係),

②、回顧三角形判定,搞清我們還需要什麼,

③、正確地書寫證明格式(順序和對應關係從已知推匯出要證明的問題).

在學習三角形的全等時,教師應該從實際生活中的圖形出發,引出全等圖形進而引出全等三角形。透過直觀的理解和比較發現全等三角形的奧妙之處。在經歷三角形的角平分線、中線等探索中激發學生的集合思維,啟發他們的靈感,使學生體會到集合的真正魅力。