1. 首頁
  2. 其他

小學數學應用題題目及答案

小學數學應用題題目及答案

應用題可分為一般應用題與典型應用題。沒有特定的解答規律的兩步以上運算的應用題,叫做一般應用題。 題目中有特殊的數量關係,可以用特定的步驟和方法來解答的應用題,叫做典型應用題。下面,小編為大家分享小學數學應用題題目及答案,希望對大家有所幫助!

1. 3箱蘋果重45千克。一箱梨比一箱蘋果多5千克,3箱梨重多少千克?

解題思路:

可先求出3箱梨比3箱蘋果多的重量,再加上3箱蘋果的重量,就是3箱梨的重量。

答題:

解:45+5×3=45+15=60(千克)

答:3箱梨重60千克。

2. 甲乙二人從兩地同時相對而行,經過4小時,在距離中點4千米處相遇。甲比乙速度快,甲每小時比乙快多少千米?

解題思路:

根據在距離中點4千米處相遇和甲比乙速度快,可知甲比乙多走4×2千米,又知經過4小時相遇。即可求甲比乙每小時快多少千米。

答題:

解:4×2÷4=8÷4=2(千米)

答:甲每小時比乙快2千米。

3.已知一張桌子的價錢是一把椅子的10倍,又知一張桌子比一把椅子多288元,一張桌子和一把椅子各多少元?

解題思路:

由已知條件可知,一張桌子比一把椅子多的288元,正好是一把椅子價錢的(10-1)倍,由此可求得一把椅子的價錢。再根據椅子的價錢,就可求得一張桌子的價錢。

答題:

解:一把椅子的價錢:

288÷(10-1)=32(元)

一張桌子的價錢:

32×10=320(元)

答:一張桌子320元,一把椅子32元。

4. 李鵬和張強付同樣多的錢買了同一種鉛筆,李鵬要了13支,張強要了7支,李鵬又給張強0.6元錢。每支鉛筆多少錢?

解題思路:

根據兩人付同樣多的錢買同一種鉛筆和李鵬要了13支,張強要了7支,可知每人應該得(13+7)÷2支,而李鵬要了13支比應得的多了3支,因此又給張強0.6元錢,即可求每支鉛筆的價錢。

答題:

解:0.6÷[13-(13+7)÷2]=0.6÷[13—20÷2]=0.6÷3=0.2(元)

答:每支鉛筆0.2元。

5. 甲乙兩輛客車上午8時同時從兩個車站出發,相向而行,經過一段時間,兩車同時到達一條河 的兩岸。由於河上的橋正在維修,車輛禁止通行,兩車需交換乘客,然後按原路返回各自出發的車站,到站時已是下午2點。甲車每小時行40千米,乙車每小時行 45千米,兩地相距多少千米?(交換乘客的時間略去不計)

解題思路:

根據已知兩車上午8時從兩站出發,下午2點返回原車站,可求出兩車所行駛的時間。根據兩車的速度和行駛的時間可求兩車行駛的總路程。

答題:

解:下午2點是14時。

往返用的時間:14-8=6(時)

兩地間路程:(40+45)×6÷2=85×6÷2=255(千米)

答:兩地相距255千米。

6. 學校組織兩個課外興趣小組去郊外活動。第一小組每小時走4.5千米,第二小組每小時行3.5千米。兩組同時出發1小時後,第一小組停下來參觀一個果園,用了1小時,再去追第二小組。多長時間能追上第二小組?

解題思路:

第一小組停下來參觀果園時間,第二小組多行了[3.5-(4.5-3.5)]?千米,也就是第一組要追趕的路程。又知第一組每小時比第二組快(?4.5-3.5)千米,由此便可求出追趕的時間。

答題:

解:第一組追趕第二組的路程:

3.5-(4.5-?3.5)=3.5-1=2.5(千米)

第一組追趕第二組所用時間:

2.5÷(4.5-3.5)=2.5÷1=2.5(小時)

答:第一組2.5小時能追上第二小組。

7. 有甲乙兩個倉庫,每個倉庫平均儲存糧食32.5噸。甲倉的存糧噸數比乙倉的4倍少5噸,甲、乙兩倉各儲存糧食多少噸?

解題思路:

根據甲倉的存糧噸數比乙倉的4倍少5噸,可知甲倉的存糧如果增加5噸,它的存糧噸數就是乙倉的4倍,那樣總存糧數也要增加5噸。若把乙倉存糧噸數看作1倍,總存糧噸數就是(4+1)倍,由此便可求出甲、乙兩倉存糧噸數。

答題:

解:乙倉存糧:

(32.5×2+5)÷(4+1)=(65+5)÷5=70÷5=14(噸)

甲倉存糧:

14×4-5=56-5=51(噸)

答:甲倉存糧51噸,乙倉存糧14噸。

8. 甲、乙兩隊共同修一條長400米的公路,甲隊從東往西修4天,乙隊從西往東修5天,正好修完,甲隊比乙隊每天多修10米。甲、乙兩隊每天共修多少米?

解題思路:

根據甲隊每天比乙隊多修10米,可以這樣考慮:如果把甲隊修的`4天看作和乙隊4天修的同樣多,那麼總長度就減少4個10米,這時的長度相當於乙(4+5)天修的。由此可求出乙隊每天修的米數,進而再求兩隊每天共修的米數。

答題:

解:乙每天修的米數:

(400-10×4)÷(4+5)=(400-40)÷9=360÷9=40(米)

甲乙兩隊每天共修的米數:

40×2+10=80+10=90(米)

答:兩隊每天修90米。

9. 學校買來6張桌子和5把椅子共付455元,已知每張桌子比每把椅子貴30元,桌子和椅子的單價各是多少元?

解題思路:

已知每張桌子比每把椅子貴30元,如果桌子的單價與椅子同樣多,那麼總價就應減少30×6元,這時的總價相當於(6+5)把椅子的價錢,由此可求每把椅子的單價,再求每張桌子的單價。

答題:

解:每把椅子的價錢:

(455-30×6)÷(6+5)=(455-180)÷11=275÷11=25(元)

每張桌子的價錢:

25+30=55(元)

答:每張桌子55元,每把椅子25元。

10. 一列火車和一列慢車,同時分別從甲乙兩地相對開出。快車每小時行75千米,慢車每小時行65千米,相遇時快車比慢車多行了40千米,甲乙兩地相距多少千米?

解題思路:

根據已知的兩車的速度可求速度差,根據兩車的速度差及快車比慢車多行的路程,可求出兩車行駛的時間,進而求出甲乙兩地的路程。

答題:

解:(7+65)×[40÷(75- 65)]=140×[40÷10]=140×4=560(千米)

答:甲乙兩地相距560千米。

11. 某玻璃廠託運玻璃250箱,合同規定每箱運費20元,如果損壞一箱,不但不付運費還要賠償100元。運後結算時,共付運費4400元。託運中損壞了多少箱玻璃?

解題思路:

根據已知託運玻璃250箱,每箱運費20元,可求出應付運費總錢數。根據每損壞一箱,不但不付運費還要賠償100元的條件可知,應付的錢數和實際付的錢數的差裡有幾個(100+20)元,就是損壞幾箱。

答題:

解:(20×250-4400)÷(10+20)=600÷120=5(箱)

答:損壞了5箱。

12. 五年級一中隊和二中隊要到距學校20千米的地方去春遊。第一中隊步行每小時行4千米,第二中隊騎腳踏車,每小時行12千米。第一中隊先出發2小時後,第二中隊再出發,第二中隊出發後幾小時才能追上一中隊?

解題思路:

因第一中隊早出發2小時比第二中隊先行4×2千米,而每小時第二中隊比第一中隊多行(12-4)千米,由此即可求第二中隊追上第一中隊的時間。

答題:

解:4×2÷(12-4)=4×2÷8 =1(時)

答:第二中隊1小時能追上第一中隊。