1. 首頁
  2. 設計

小學數學圓錐的體積一課的教學設計

小學數學圓錐的體積一課的教學設計

教學目的:使學生初步掌握圓錐體積的計算公式。

並能運用公式正確地計算圓錐的體積,發展學生的空間觀念。

教學難點:圓錐的體積應用

學具準備:等底等高的圓柱和圓錐,水和沙,多媒體課件

教學時間:一課時

教學過程:

一、複習

1、圓錐有什麼特徵?(課件出示)

使學生進一步熟悉圓錐的特徵:底面,側面,高和頂點。

2、圓柱體積的計算公式是什麼?

指名學生回答,並板書公式:“圓柱的體積=底面積×高”。同時滲透轉化方法在數學學習中的應用。

二、導人新課

出示一個圓錐形的谷堆,給出底面直徑和高,讓學生思考如何求它的體積。

板書課題:圓錐的體積

三、新課

1、教學圓錐體積的計算公式。

師:請大家回億一下,我們是怎樣得到圓柱體積的計算公式的?

指名學生敘述圓柱體積計算公式的推導過程,使學生明確求圓柱的體積是透過切拼成長方體來求得的。

師:那麼圓錐的體積該怎樣求呢?能不能也透過已學過的圖形來求呢?

先讓學生討論一下用什麼方法求,然後指出:我們可以透過實驗的方法,得到計算圓錐體積的公式。

教師拿出等底等高的圓柱和圓錐各一個,“大家看,這個圓錐和圓柱有什麼共同的`地方?”

然後透過演示後,指出:“這個圓錐和圓柱是等底等高的,下面我們透過實驗,看看它們之間的體積有什麼關係?”

學生分組實驗。

彙報實驗結果。先在圓錐裡裝滿水,然後倒入圓柱。正好3次可以倒滿。

多指名說

接著,教師課件邊演示邊敘述:現在圓錐和圓柱裡都是空的。請大家注意觀察,看看能夠倒幾次正好把圓柱裝滿?

問:把圓柱裝滿一共倒了幾次?

生:3次。

師:這說明了什麼?

生:這說明圓錐的體積是和它等底等高的圓柱的體積的。

多找幾名同學說。

板書:圓錐的體積=1/3 ×圓柱體積

師:圓柱的體積等於什麼?

生:等於“底面積×高”。

師:那麼,圓錐的體積可以怎樣表示呢?

引導學生想到可以用“底面積×高”來替換“圓柱的體積”,於是可以得到圓錐體積的計算公式。

板書:圓錐的體積= 1/3 ×底面積×高

師:用字母應該怎樣表示?

然後板書字母公式:V=1/3 SH

師:在這個公式裡你覺得哪裡最應該注意?

教學例1課件出示)一個圓錐的零件,底面積是19平方釐米,高是12釐米。這個零件的體積是多少?

1/3×19×12=76((立方厘米))

答:這個零件體積是76立方厘米。

做一做:課件出示,學生回答後,教師訂正。

1、一個圓錐的底面積是25平方分米,高是9分米,它的體積是多少?

2、已知圓錐的底面半徑r和高h,如何求體積V?

3、已知圓錐的底面直徑d和高h,如何求體積V?

4、已知圓錐的底面周長C和高h,如何求體積V?

5、一個圓錐的底面直徑是20釐米,高是9釐米,它的體積是多少?

例2課件出示)在打穀場上,有一個近似於圓錐的小麥堆,測得底面直徑是4米,高是1.2米。每立方米小麥約重735千克,這堆小麥大約有多少千克?(得數保留整千克)

判斷:課件出示,學生回答後,教師訂正。

1、圓柱體的體積一定比圓錐體的體積大( )

2、圓錐的體積等於和它等底等高的圓柱體積的 ( ) 。

3、正方體、長方體、圓錐體的體積都等於底面積×高。 ( )

4、等底等高的圓柱和圓錐,如果圓柱體的體積是27立方米,那麼圓錐的體積是9立方米( )

四、教師小結。

這節課我們學習了哪些知識?你還有什麼問題嗎?

五、作業。課本練習