小學圖形測量等知識點總結
立體圖形【認識、表面積、體積】
一、長方體、正方體都有6個面,12條稜,8個頂點。正方體是特殊的長方體。
二、圓柱的特徵:一個側面、兩個底面、無數條高。
三、圓錐的特徵:一個側面、一個底面、一個頂點、一條高。
四、表面積:立體圖形所有面的面積的和,叫做這個立體圖形的表面積。
五、體積:物體所佔空間的大小叫做物體的體積。容器所能容納其它物體的體積叫做容器的容積。
六、圓柱和圓錐三種關係:
①等底等高:體積1︰3
②等底等體積:高1︰3
③等高等體積:底面積1︰3
七、等底等高的圓柱和圓錐:
①圓錐體積是圓柱的1/3,
②圓柱體積是圓錐的3倍,
③圓錐體積比圓柱少2/3,
④圓柱體積比圓錐多2倍。
八、等底等高的圓柱和圓錐:錐1、差2、柱3、和4。
九、立體圖形公式推導:
【1】圓柱的側面展開後得到一個什麼圖形?這個圖形的各部分與圓柱有何關係?(圓柱側面積公式的推導過程)
①圓柱的側面展開後一般得到一個長方形。
②長方形的'長相當於圓柱的底面周長,長方形的寬相當於圓柱的高。
③因為:長方形面積=長寬,所以:圓柱側面積=底面周長高。
④圓柱的側面展開後還可能得到一個正方形。
⑤正方形的邊長=圓柱的底面周長=圓柱的高。
【2】我們在學習圓柱體積的計算公式時,是把圓柱轉化成以前學過的一種立體圖形(近似的)進行推導的,請你說出這種立體圖形的名稱以及它與圓柱體有關部分之間的關係?
①把圓柱分成若干等份,切開後拼成了一個近似的長方體。
②長方體的底面積等於圓柱的底面積,長方體的高等於圓柱的高。
③因為:長方體體積=底面積高,所以:圓柱體積=底面積高。即:V=Sh。
【3】請畫圖說明圓錐體積公式的推導過程?
①找來等底等高的空圓錐和空圓柱各一隻。
②將圓錐裝滿沙子,倒入圓柱中,發現三次正好裝滿,將圓柱裡的沙子倒入圓錐中,發現三次正好倒完。
③透過實驗發現:圓錐的體積等於和它等底等高的圓柱體積的三分之一;圓柱的體積等於和它等底等高的圓錐體積的三倍。即:V=1/3Sh。
十、立體圖形的稜長總和、表面積、體積計算公式:
(二)圖形與變換
一、變換圖形位置的方法有平移、旋轉等,在變換位置時,每個圖形的相應頂點、線段、曲線應同步平移,旋轉相同的角度。
二、不改變圖形的形狀,只改變它的大小時,通常要使每個圖形的要素,如長方形的長與寬,三角形的底與高等同時按相同比例放大或縮小。
三、對稱圖形是對稱軸兩邊的圖形經對摺後能夠完全重合,而不是完全相同。
(三)圖形與位置
一、當我們處在實際生活及情景中,面對教短距離時,通常用上、下、前、後來描述具體位置。
二、當我們面對地圖、方點陣圖時,通常用東、西、南、北,南偏東、北偏東來描述方向。再結合所示比例尺計算出具體距離,把方向與距離結合起來確定位置。