關於高考倒計時:高考數學答題方法15條鐵律
1。函式或方程或不等式的題目,先直接思考後建立三者的聯絡。首先考慮定義域,其次使用三合一定理。
2。如果在方程或是不等式中出現超越式,優先選擇數形結合的思想方法;
3。面對含有引數的初等函式來說,在研究的時候應該抓住引數沒有影響到的不變的性質。如所過的定點,二次函式的對稱軸或是;
4。選擇與填空中出現不等式的題目,優選特殊值法;
5。求引數的`取值範圍,應該建立關於引數的等式或是不等式,用函式的定義域或是值域或是解不等式完成,在對式子變形的過程中,優先選擇分離引數的方法;
6。恆成立問題或是它的反面,可以轉化為最值問題,注意二次函式的應用,靈活使用閉區間上的最值,分類討論的思想,分類討論應該不重複不遺漏;
7。圓錐曲線的題目優先選擇它們的定義完成,直線與圓錐曲線相交問題,若與弦的中點有關,選擇設而不求點差法,與弦的中點無關,選擇韋達定理公式法;使用韋達定理必須先考慮是否為二次及根的判別式;
8。求曲線方程的題目,如果知道曲線的形狀,則可選擇待定係數法,如果不知道曲線的形狀,則所用的步驟為建系、設點、列式、化簡(注意去掉不符合條件的特殊點);
9。求橢圓或是雙曲線的離心率,建立關於a、b、c之間的關係等式即可;
10。三角函式求週期、單調區間或是最值,優先考慮化為一次同角弦函式,然後使用輔助角公式解答;解三角形的題目,重視內角和定理的使用;與向量聯絡的題目,注意向量角的範圍;
11。數列的題目與和有關,優選和通公式,優選作差的方法;注意歸納、猜想之後證明;猜想的方向是兩種特殊數列;解答的時候注意使用通項公式及前n項和公式,體會方程的思想;
12。立體幾何第一問如果是為建系服務的,一定用傳統做法完成,如果不是,可以從第一問開始就建系完成;注意向量角與線線角、線面角、面面角都不相同,熟練掌握它們之間的三角函式值的轉化;錐體體積的計算注意係數1/3,而三角形面積的計算注意係數1/2;與球有關的題目也不得不防,注意連線心心距創造直角三角形解題;
13。導數的題目常規的一般不難,但要注意解題的層次與步驟,如果要用建構函式證明不等式,可從已知或是前問中找到突破口,必要時應該放棄;重視幾何意義的應用,注意點是否在曲線上;
14。機率的題目如果出解答題,應該先設事件,然後寫出使用公式的理由,當然要注意步驟的多少決定解答的詳略;如果有分佈列,則機率和為1是檢驗正確與否的重要途徑;
15。遇到複雜的式子可以用換元法,使用換元法必須注意新元的取值範圍,有勾股定理型的已知,可使用三角換元來完成;