高考數學選擇題各種解題方法一覽
選擇題從難度上講是比其他型別題目降低了,但知識覆蓋面廣,要求解題熟練、準確、靈活、快速。選擇題的解題思想,淵源於選擇題與常規題的聯絡和區別。它在一定程度上還保留著常規題的某些痕跡。而另一方面,選擇題在結構上具有自己的特點,即至少有一個答案(若一元選擇題則只有一個答案)是正確的或合適的。因此可充分利用題目提供的資訊,排除迷惑支的干擾,正確、合理、迅速地從選擇支中選出正確支。選擇題中的錯誤支具有兩重性,既有干擾的一面,也有可利用的一面,只有透過認真的觀察、分析和思考才能揭露其潛在的暗示作用,從而從反面提供資訊,迅速作出判斷。
由於我多年從事高考試題的研究,尤其對選擇題我有自己的一套考試技術,我知道無論是什麼科目的選擇題,都有它固有的漏洞和具體的.解決辦法,我把它總結為:6大漏洞、8大法則。“6大漏洞”是指:有且只有一個正確答案;不問過程只問結果;題目有暗示;答案有暗示;錯誤答案有嚴格標準;正確答案有嚴格標準;“8大原則”是指:選項唯一原則;範圍最大原則;定量轉定性原則;選項對比原則;題目暗示原則;選擇項暗示原則;客觀接受原則;語言的精確度原則。經過我的培訓,很多的學生的選擇題甚至1分都不丟。
下面是一些例項:
1.特值檢驗法:對於具有一般性的數學問題,我們在解題過程中,可以將問題特殊化,利用問題在某一特殊情況下不真,則它在一般情況下不真這一原理,達到去偽存真的目的。
例:△ABC的三個頂點在橢圓4x2+5y2=6上,其中A、B兩點關於原點O對稱,設直線AC的斜率k1,直線BC的斜率k2,則k1k2的值為
A. -5/4 B.-4/5 C.4/5 D.2√5/5
解析:因為要求k1k2的值,由題幹暗示可知道k1k2的值為定值。題中沒有給定A、B、C三點的具體位置,因為是選擇題,我們沒有必要去求解,透過簡單的畫圖,就可取最容易計算的值,不妨令A、B分別為橢圓的長軸上的兩個頂點,C為橢圓的短軸上的一個頂點,這樣直接確認交點,可將問題簡單化,由此可得,故選B.
2.極端性原則:將所要研究的問題向極端狀態進行分析,使因果關係變得更加明顯,從而達到迅速解決問題的目的。極端性多數應用在求極值、取值範圍、解析幾何上面,很多計算步驟繁瑣、計算量大的題,一但採用極端性去分析,那麼就能瞬間解決問題。
3.剔除法:利用已知條件和選擇支所提供的資訊,從四個選項中剔除掉三個錯誤的答案,從而達到正確選擇的目的。這是一種常用的方法,尤其是答案為定值,或者有數值範圍時,取特殊點代入驗證即可排除。
4.數形結合法:由題目條件,作出符合題意的圖形或圖象,藉助圖形或圖象的直觀性,經過簡單的推理或計算,從而得出答案的方法。數形結合的好處就是直觀,甚至可以用量角尺直接量出結果來。
5.遞推歸納法:透過題目條件進行推理,尋找規律,從而歸納出正確答案的方法。