成考專升本高等數學的考試大綱
本大綱適用於工學理學(生物科學類、地理科學類、環境科學類、心理學類等四個一級學科除外)專業的考生。
總要求考生應按本大綱的要求,瞭解或理解“高等數學”中函式、極限和連續、一元函式微分學、一元函式積分學、向量代數與空間解析幾何、多元函式微積分學、無窮級數、常微分方程的基本概念與基本理論;學會、掌握或熟練掌握上述各部分的基本方法。應注意各部分知識的結構及知識的內在聯絡;應具有一定的抽象思維能力、邏輯推理能力、運算能力、空間想象能力;能運用基本概念、基本理論和基本方法正確地推理證明,準確地計算;能綜合運用所學知識分析並解決簡單的實際問題。
本大綱對內容的要求由低到高,對概念和理論分為“瞭解”和“理解”兩個層次;對方法和運算分為“會”、“掌握”和“熟練掌握”三個層次。
複習考試內容
一、函式、極限和連續
(一)函式
1.知識範圍
(1)函式的概念
函式的定義 函式的表示法 分段函式 隱函式
(2)函式的性質
單調性 奇偶性 有界性 週期性
(3)反函式
反函式的定義 反函式的影象
(4)基本初等函式
冪函式 指數函式 對數函式 三角函式 反三角函式
(5)函式的四則運算與複合運算
(6)初等函式
2.要求
(1)理解函式的概念。會求函式的表示式、定義域及函式值。會求分段函式的定義域、函式值,會作出簡單的分段函式的影象。
(2)理解函式的單調性、奇偶性、有界性和週期性。
(3)瞭解函式 與其反函式 之間的關係(定義域、值域、影象),會求單調函式的反函式。
(4)熟練掌握函式的四則運算與複合運算。
(5)掌握基本初等函式的性質及其影象。
(6)瞭解初等函式的概念。
(7)會建立簡單實際問題的函式關係式。
(二)極限
1.知識範圍
(1)數列極限的概念
數列 數列極限的定義
(2)數列極限的性質
唯一性 有界性 四則運演算法則 夾逼定理 單調有界數列極限存在定理
(3)函式極限的概念
函式在一點處極限的定義 左、右極限及其與極限的關係 趨於無窮 時函式的極限 函式極限的幾何意義
(4)函式極限的性質
唯一性 四則運演算法則 夾通定理
(5)無窮小量與無窮大量
無窮小量與無窮大量的定義 無窮小量與無窮大量的關係 無窮小量的性質 無窮小量的階
(6)兩個重要極限
2.要求
(1)理解極限的概念(對極限定義中“ ”、“ ”、“ ”等形式的描述不作要求)。會求函式在一點處的左極限與右極限,瞭解函式在一點處極限存在的充分必要條件。
(2)瞭解極限的有關性質,掌握極限的四則運演算法則。
(3)理解無窮小量、無窮大量的概念,掌握無窮小量的性質、無窮小量與無窮大量的關係。會進行無窮小量階的比較(高階、低階、同階和等價)。會運用等價無窮小量代換求極限。
(4)熟練掌握用兩個重要極限求極限的方法。
(三)連續
1.知識範圍
(1)函式連續的概念
函式在一點處連續的定義 左連續與右連續 函式在一點處連續的充分必要條件 函式的間斷點及其分類
(2)函式在一點處連續的性質
連續函式的四則運算 複合函式的連續性 反函式的連續性
(3)閉區間上連續函式的性質
有界性定理 最大值與最小值定理 介值定理(包括零點定理)
(4)初等函式的連續性
2.要求
(1)理解函式在一點處連續與間斷的概念,理解函式在一點處連續與極限存在的關係,掌握判斷函式(含分段函式)在一點處的連續性的`方法。
(2)會求函式的間斷點及確定其型別。
(3)掌握在閉區間上連續函式的性質,會用介值定理推證一些簡單命題。
(4)理解初等函式在其定義區間上的連續性,會利用連續性求極限。
二、一元函式微分學
(一)導數與微分
1.知識範圍
(1)導數概念
導數的定義 左導數與右導數 函式在一點處可導的充分必要條件 導數的幾何意義與物理意義 可導與連續的關係
(2)求導法則與導數的基本公式
導數的四則運算 反函式的導數 導數的基本公式
(3)求導方法
複合函式的求導法 隱函式的求導法 對數求導法 由引數方程確定的函式的求導法 求分段函式的導數
(4)高階導數
高階導數的定義 高階導數的計算
(5)微分
微分的定義 微分與導數的關係 微分法則 一階微分形式不變性
2.要求
(1)理解導數的概念及其幾何意義,瞭解可導性與連續性的關係,掌握用定義求函式在一點處的導數的方法。
(2)會求曲線上一點處的切線方程與法線方程。