有關小升初數學知識點的總結
1、小升初數學知識點(年齡問題的三大特徵)
年齡問題:已知兩人的年齡,求若干年前或若干年後兩人年齡之間倍數關係的應用題,叫做年齡問題。
年齡問題的三個基本特徵:
①兩個人的年齡差是不變的;
②兩個人的年齡是同時增加或者同時減少的;
③兩個人的年齡的倍數是發生變化的;
解題規律:抓住年齡差是個不變的數(常數),而倍數卻是每年都在變化的這個關鍵。
例:父親今年54歲,兒子今年18歲,幾年前父親的年齡是兒子年齡的7倍
⑴ 父子年齡的差是多少?54 – 18 = 36(歲)
⑵ 幾年前父親年齡比兒子年齡大幾倍? 7 - 1 = 6
⑶ 幾年前兒子多少歲? 36÷6 = 6(歲)
⑷ 幾年前父親年齡是兒子年齡的7倍? 18 – 6 = 12 (年)
答:12年前父親的年齡是兒子年齡的7倍。
2、小升初數學知識點(歸一問題特點)
歸一問題的基本特點:
問題中有一個不變的量,一般是那個“單一量”,題目一般用“照這樣的速度”……等詞語來表示。
關鍵問題:根據題目中的條件確定並求出單一量;
複合應用題中的某些問題,解題時需先根據已知條件,求出一個單位量的數值,如單位面積的產量、單位時間的工作量、單位物品的價格、單位時間所行的距離等等,然後,再根據題中的條件和問題求出結果。這樣的應用題就叫做歸一問題,這種解題方法叫做“歸一法”。有些歸一問題可以採取同類數量之間進行倍數比較的方法進行解答,這種方法叫做倍比法。
由上所述,解答歸一問題的關鍵是求出單位量的數值,再根據題中“照這樣計算”、“用同樣的速度”等句子的含義,抓準題中數量的對應關係,列出算式,求得問題的`解決。
3、小升初數學知識點(植樹問題總結)
植樹問題基本型別:
在直線或者不封閉的曲線上植樹,兩端都植樹
在直線或者不封閉的曲線上植樹,兩端都不植樹
在直線或者不封閉的曲線上植樹,只有一端植樹
封閉曲線上植樹
基本公式:
棵數=段數+1 棵距×段數=總長 棵數=段數-1
棵距×段數=總長 棵數=段數 棵距×段數=總長
關鍵問題:
確定所屬型別,從而確定棵數與段數的關係
4、小升初數學知識點(雞兔同籠問題)
雞兔同籠問題基本概念:雞兔同籠問題又稱為置換問題、假設問題,就是把假設錯的那部分置換出來;
基本思路:
①假設,即假設某種現象存在(甲和乙一樣或者乙和甲一樣):
②假設後,發生了和題目條件不同的差,找出這個差是多少;
③每個事物造成的差是固定的,從而找出出現這個差的原因;
④再根據這兩個差作適當的調整,消去出現的差。
基本公式:
①把所有雞假設成兔子:雞數=(兔腳數×總頭數-總腳數)÷(兔腳數-雞腳數)
②把所有兔子假設成雞:兔數=(總腳數一雞腳數×總頭數)÷(兔腳數一雞腳數)
關鍵問題:找出總量的差與單位量的差。
5、小升初數學知識點(盈虧問題)
盈虧問題基本概念:一定量的物件,按照某種標準分組,產生一種結果:按照另一種標準分組,又產生一種結果,由於分組的標準不同,造成結果的差異,由它們的關係求物件分組的組數或物件的總量.
基本思路:先將兩種分配方案進行比較,分析由於標準的差異造成結果的變化,根據這個關係求出參加分配的總份數,然後根據題意求出物件的總量.
基本題型:
①一次有餘數,另一次不足;
基本公式:總份數=(餘數+不足數)÷兩次每份數的差
②當兩次都有餘數;
基本公式:總份數=(較大餘數一較小余數)÷兩次每份數的差
③當兩次都不足;
基本公式:總份數=(較大不足數一較小不足數)÷兩次每份數的差
基本特點:物件總量和總的組數是不變的。
關鍵問題:確定物件總量和總的組數。