1. 首頁
  2. 總結範文

特殊的平行四邊形初中數學知識點總結

特殊的平行四邊形初中數學知識點總結

一、特殊的平行四邊形

1.矩形:

(1)定義:有一個角是直角的平行四邊形。

(2)性質:矩形的四個角都是直角;矩形的對角線平分且相等。

(3)判定定理:

①有一個角是直角的平行四邊形叫做矩形。②對角線相等的平行四邊形是矩形。③有三個角是直角的四邊形是矩形。

直角三角形的性質:直角三角形中所對的直角邊等於斜邊的一半。

2.菱形:

(1)定義 :鄰邊相等的平行四邊形。

(2)性質:菱形的四條邊都相等;菱形的兩條對角線互相垂直,並且每一條對角線平分一組對角。

(3)判定定理:

①一組鄰邊相等的平行四邊形是菱形。

②對角線互相垂直的平行四邊形是菱形。

③四條邊相等的四邊形是菱形。

(4)面積:

3.正方形:

(1)定義:一個角是直角的菱形或鄰邊相等的矩形。

(2)性質:四條邊都相等,四個角都是直角,對角線互相垂直平分。 正方形既是矩形,又是菱形。

(3)正方形判定定理:

①對角線互相垂直平分且相等的四邊形是正方形;

②一組鄰邊相等,一個角為直角的平行四邊形是正方形;

③對角線互相垂直的矩形是正方形;

④鄰邊相等的矩形是正方形

⑤有一個角是直角的菱形是正方形;

⑥對角線相等的菱形是正方形。

二、矩形、菱形、正方形與平行四邊形、四邊形之間的聯絡:

1.矩形、菱形和正方形都是特殊的平行四邊形,其性質都是在平行四邊形的基礎上擴充來的。矩形是由平行四邊形增加“一個角為90°”的條件得到的,它在角和對角線方面具有比平行四邊形更多的特性;菱形是由平行四邊形增加“一組鄰邊相等”的條件得到的,它在邊和對角線方面具有比平行四邊形更多的特性;正方形是由平行四邊形增加“一組鄰邊相等”和“一個角為90°”兩個條件得到的,它在邊、角和對角線方面都具有比平行四邊形更多的`特性。

2.矩形、菱形的判定可以根據出發點不同而分成兩類:一類是以四邊形為出發點進行判定,另一類是以平行四邊形為出發點進行判定。而正方形除了上述兩個出發點外,還可以從矩形和菱形出發進行判定。

三、判定一個四邊形是特殊四邊形的步驟:

常見考法

(1)利用菱形、矩形、正方形的性質進行邊、角以及面積等計算;

(2)靈活運用判定定理證明一個四邊形(或平行四邊形)是菱形、矩形、正方形;

(3)一些摺疊問題;

(4)矩形與直角三角形和等腰三角形有著密切聯絡、正方形與等腰直角三角形也有著密切聯絡。所以,以此為背景可以設定許多考題。

誤區提醒

(1)平行四邊形的所有性質矩形、菱形、正方形都具有,但矩形、菱形、正方形具有的性質平行四邊形不一定具有,這點易出現混淆;

(2)矩形、菱形具有的性質正方形都具有,而正方形具有的性質,矩形不一定具有,菱形也不一定具有,這點也易出現混淆;

(3)不能正確的理解和運用判定定理進行證明,(如在證明菱形時,把四條邊相等的四邊形是菱形誤解成兩組鄰邊相等的四邊形是菱形);(3)再利用對角線長度求菱形的面積時,忘記乘;(3)判定一個四邊形是特殊的平行四邊形的條件不充分。

【典型例題】正方形ABCD中,點O是對角線DB的中點,點P是DB所在直線上的一個動點,PE⊥BC於E,PF⊥DC於F.

(1)當點P與點O重合時(如圖①),猜測AP與EF的數量及位置關係,並證明你的結論;

(2)當點P線上段DB上 (不與點D、O、B重合)時(如圖②),探究(1)中的結論是否成立?若成立,寫出證明過程;若不成立,請說明理由;

(3)當點P在DB的長延長線上時,請將圖③補充完整,並判斷(1)中的結論是否成立?若成立,直接寫出結論;若不成立,請寫出相應的結論.

【解析】(1)AP=EF,AP⊥EF,理由如下:

連線AC,則AC必過點O,延長FO交AB於M;

∵OF⊥CD,OE⊥BC,且四邊形ABCD是正方形,

∴四邊形OECF是正方形,

∴OM=OF=OE=AM,

∵∠MAO=∠OFE=45°,∠AMO=∠EOF=90°,

∴△AMO≌△FOE,

∴AO=EF,且∠AOM=∠OFE=∠FOC=45°,即OC⊥EF,

故AP=EF,且AP⊥EF.

(2)題(1)的結論仍然成立,理由如下:

延長AP交BC於N,延長FP交AB於M;

∵PM⊥AB,PE⊥BC,∠MBE=90°,且∠MBP=∠EBP=45°,

∴四邊形MBEP是正方形,

∴MP=PE,∠AMP=∠FPE=90°;

又∵AB-BM=AM,BC-BE=EC=PF,且AB=BC,BM=BE,

∴AM=PF,

∴△AMP≌△FPE,

∴AP=EF,∠APM=∠FPN=∠PEF

∵∠PEF+∠PFE=90°,∠FPN=∠PEF,

∴∠FPN+∠PFE=90°,即AP⊥EF,

故AP=EF,且AP⊥EF.

(3)題(1)(2)的結論仍然成立;

如右圖,延長AB交PF於H,證法與(2)完全相同