1. 首頁
  2. 其他

公式的意義數學教學教案

公式的意義數學教學教案

教學目標

1.瞭解公式的意義,使學生能用公式解決簡單的實際問題;

2.初步培養學生觀察、分析及概括的能力;

3.透過本節課的教學,使學生初步瞭解公式來源於實踐又反作用於實踐。

教學建議

一、教學重點、難點

重點:透過具體例子瞭解公式、應用公式.

難點:從實際問題中發現數量之間的關係並抽象為具體的公式,要注意從中反應出來的歸納的思想方法。

二、重點、難點分析

人們從一些實際問題中抽象出許多常用的、基本的數量關係,往往寫成公式,以便應用。如本課中梯形、圓的面積公式。應用這些公式時,首先要弄清楚公式中的字母所表示的意義,以及這些字母之間的數量關係,然後就可以利用公式由已知數求出所需的未知數。具體計算時,就是求代數式的值了。有的公式,可以藉助運算推匯出來;有的公式,則可以透過實驗,從得到的反映數量關係的一些資料(如資料表)出發,用數學方法歸納出來。用這些抽象出的具有一般性的公式解決一些問題,會給我們認識和改造世界帶來很多方便。

三、知識結構

本節一開始首先概述了一些常見的公式,接著三道例題循序漸進的講解了公式的直接應用、公式的先推導後應用以及透過觀察歸納推導公式解決一些實際問題。整節內容滲透了由一般到特殊、再由特殊到一般的辨證思想。

四、教法建議

1.對於給定的可以直接應用的公式,首先在給出具體例子的`前提下,教師創設情境,引導學生清晰地認識公式中每一個字母、數字的意義,以及這些數量之間的對應關係,在具體例子的基礎上,使學生參與挖倔其中蘊涵的思想,明確公式的應用具有普遍性,達到對公式的靈活應用。

2.在教學過程()中,應使學生認識有時問題的解決並沒有現成的公式可套,這就需要學生自己嘗試探求數量之間的關係,在已有公式的基礎上,透過分析和具體運算推導新公式。

3.在解決實際問題時,學生應觀察哪些量是不變的,哪些量是變化的,明確數量之間的對應變化規律,依據規律列出公式,再根據公式進一步地解決問題。這種從特殊到一般、再從一般到特殊認識過程,有助於提高學生分析問題、解決問題的能力。