1. 首頁
  2. 設計

圓柱的表面積教案設計「最新」

2017年圓柱的表面積教案設計「最新」

圓柱的表面積教案設計怎麼寫呢?下面,小編為大家整理關於2017年圓柱的表面積教案設計,歡迎大家參考閱讀。

2017年圓柱的表面積教案設計【1】

教學目標:

1.理解圓柱表面積的含義。

2.掌握圓柱的表面積的計算方法,會正確地計算圓柱的表面積。

3.能靈活運用求表面積的有關知識解決一些簡單的實際問題。

教學重點:理解求圓柱的表面積的計算方法並能正確計算。

教學難點:靈活運用表面積的有關知識解決實際問題。

教學方法:探索發現,歸納總結,實際應用

學法指導:小組合作,探究發現

教學準備:

課件

圓柱模型

教學過程:

一、激情導思(5分)

1、填空

(1)圓柱有()個底面,它們是 ();有()側 面,是(),有()條高,這些高都()。

(2)圓柱的側面展開是( ),長方形的長等於(),寬等於()。

(3)圓柱的側面積=

2、求下面各圓柱的側面積。(只列式,不計算)

①c=9.42釐米,h=5釐米。

②d=8米,h=3米。

③r=2分米,h=6分米。

二、探究新知(15分)

小組交流:

1、圓柱的表面積怎麼計算?

2、根據實際情況圓柱形煙囪,水桶,油桶的表面積怎麼計算?

3、歸納總結:

(1)s表面積=s側面積+2s底面積

(2)煙囪表面積=側面積

(3)水桶表面積=側面積+一個底面積

(4)油桶表面積=側面積+兩個底面積

4、出示例2:一個圓柱形油桶高6分米,底面直徑4分米,做這個油桶至少需要多少平方分米的鐵皮?

(1)學生獨立嘗試解決

(2)全班交流:

油桶的側面積:3.14×4×6=75.36(平方分米)

油桶的底面積:3.14×(4÷2)×(4÷2)×2=25.12(平方分米)

油桶的表面積:75.36+25.12=100.48(平方分米)

答:做這個油桶至少需要100.48平方分米的鐵皮。

三、課內練習:

1、數學書33頁第2題求表面積並填表

2、計算下現各圓柱的表面積。(圖中單位:釐米)

四、拓展應用

3、學校食堂要用鐵皮做一根橫截面半徑是3分米,高是3米的圓柱形煙囪,至少需要多少平方米的鐵皮?

4、修建一個圓柱形沼氣池,底面直徑是4米,深是2米。在池的四壁與底面抹上水泥,抹水泥部分的面積是多少平方米?

5、數學書33頁第6題

四:總結:

1、圓柱表面積的有關知識,在實際應用時要注意什麼呢?

應用圓柱的表面積有關知識解決實際問題時,要具體情況具體分析,根據實際需要來計算各部分面積,必須靈活掌握。另外,在生產中備料多少,一般採用進一法,目的就是為了保證原材料夠用。

五、佈置作業(8分)

數學書33頁第3、4、5題

板書設計: 圓柱的表面積

例2:油桶的側面積:3.14×4×6=75.36(平方分米)

油桶的底面積:3.14×(4÷2)×(4÷2)×2=25.12(平方分米)

油桶的表面積:75.36+25.12=100.48(平方分米)

答:做這個油桶至少需要100.48平方分米的鐵皮。

2017年圓柱的表面積教案設計【2】

教學內容

教材40頁、41頁例1、例2、例3及做一做,練習十第2-5題。

素質教育目標

(一)知識教學點

1.理解圓柱的側面積和表面積的含義。

2.掌握圓柱側面積和表面積的計算方法。

3.會正確計算圓柱的側面積和表面積。

(二)能力訓練點

能靈活運用求表面積、側面積的有關知識解決一些實際問題。

教學重點

理解求表面積、側面積的計算方法,並能正確進行計算。

教學難點

能靈活運用表面積、側面積的有關知識解決實際問題。

教具學具準備

1.教師、學生每人用硬紙做一個圓柱體模型。

2.投影片。

教學步驟

一、鋪墊孕伏

1.口答下列各題(只列式不計算)。

(1)圓的半徑是5釐米,周長是多少?面積是多少?

(2)圓的直徑是3分米,周長是多少?面積是多少?

2.長方形的面積計算公式是什麼?

3.教師出示圓柱體模型,指同學說出它有什麼特徵?

二、探究新知

1.利用圓柱體模型的側面展開圖,引導學生概括出圓柱側面積的計算方法。

(1)讓學生觀察議論:圓柱的側面展開圖(是長方形)的長與寬分別和圓柱底面周長與高的關係。

(2)引導學生概括出:因為長方形的面積等於長×寬,而這個長方形的長等於圓柱的底面周長,寬等於圓柱的高,長方形的面積就是圓柱的側面積,所以圓柱的側面積等於底面周長乘以高。

2.教學例1

(1)出示例1,指同學讀題,找出已知條件和所求問題。

學生獨立解答,並把計算步驟填在課本50頁例1下面的空白處,然後訂正。

板書:3。14×0。5×1。8

=1。75×1。8

≈2。83(平方米)

答:它的側面積約是2。83平方米。

(2)反饋練習:完成做一做41頁第1題。

學生獨立解答,然後訂正。

3.教學

(1)教師說明:圓柱的側面積加上兩個底面積就是。

(2)讓學生利用圓柱體模型展開圖進行比較、區別,從而使學生清楚:是指圓柱表面的面積,是側面積加上兩個底面積,而側面積是指圓柱側面的面積;表面積包含著側面積。

4.教學例2

(1)投影片出示例題2、圓柱的幾何圖形和表面積的.展圖。

(2)指同學讀題,找出已知條件和所求問題。

(3)讓學生觀察圓柱表面積的展開圖,並小組議論:讓學生理解圓柱表面積的組成部分,再按順序說出求表面積的具體過程。具體計算由學生完成。

(4)指學生板演,其他同學在練習本上做,並把計算結果填在書上。

教師巡視指導,注意檢查學生的計算結果和計量單位是否正確。

做完後訂正,訂正時讓學生說出有關的計算公式。

(5)反饋練習:完成做一做第2題。

指一名學生在小黑板上做,其他在練習本上做,然後訂正,訂正時讓學生講解題方法。

5.教學例3

(1)出示例3,指名讀題,找出已知條件和所求問題。

(2)教師提示:解答這道題應注意什麼?

啟發學生說出:這道題是求做這個水桶要用鐵皮多少平方釐米。實際上是求這個圓柱形水桶的表面積。題裡告訴我們的“一個沒有蓋的圓柱形鐵皮水桶”,計算時就是用側面積加上一個底面積。

(3)學生在練習本上做,教師巡視指導,注意檢查學生的計算結果。如果發現計算結果是1800平方釐米的讓該生上黑板上做。

(4)訂正,讓板演的學生講解題的思路和計算結果取近似值的方法。

(5)教師說明:這裡不能用“四捨五入”法取近似值。在實際中,製作水桶使用的材料要比計算得到的數多一些,這樣才能保證原材料夠用。那麼保留整百平方釐米時,十位上即使是4或比4小,也要向前一位進1。這種取近似值的方法叫做進一法,所以這題的計算結果應是1900平方釐米。

(6)“四捨五入”法與“進一法”有什麼不同。

透過比較,使學生明白:“四捨五入”法在取近似值時,看要保留位數的後一位,是5或比5大的捨去尾數