1. 首頁
  2. 生物/化工/環保/能源

高三生物知識點

高三生物知識點通用15篇

在我們平凡的學生生涯裡,大家最不陌生的就是知識點吧!知識點在教育實踐中,是指對某一個知識的泛稱。為了幫助大家更高效的學習,下面是小編為大家整理的高三生物知識點,歡迎閱讀與收藏。

高三生物知識點1

名詞:

1、染色體組型:也叫核型,是指一種生物體細胞中全部染色體的數目、大小和形態特徵。觀察染色體組型的時期是有絲分裂的中期。

2、性別決定:一般是指雌雄異體的生物決定性別的方式。

3、性染色體:決定性別的染色體叫做性染色體。

4、常染色體:與決定性別無關的染色體叫做常染色體。

5、伴性遺傳:性染色體上的基因,它的遺傳方式是與性別相聯絡的,這種遺傳方式叫做伴性遺傳。

語句:

1、染色體的四種類型:中著絲粒染色體,亞中著絲粒染色體,近端著絲粒染色體,端著絲粒染色體。

2、性別決定的型別:(1)_Y型:雄性個體的體細胞中含有兩個異型的性染色體(_Y),雌性個體含有兩個同型的性染色體(__)的性別決定型別。(2)ZW型:與_Y型相反,同型性染色體的個體是雄性,而異型性染色體的個體是雌性。蛾類、蝶類、鳥類(雞、鴨、鵝)的性別決定屬於“ZW”型。3、色盲病是一種先天性色覺障礙病,不能分辨各種顏色或兩種顏色。其中,常見的色盲是紅綠色盲,患者對紅色、綠色分不清,全色盲極個別。色盲基因(b)以及它的等位基因——正常人的B就位於_染色體上,而Y染色體的相應位置上沒有什麼色覺的基因。

4、人的正常色覺和紅綠色盲的基因型(在寫色覺基因型時,為了與常染色體的基因相區別,一定要先寫出性染色體,再在右上角標明基因型。):色盲女性(_b_b),正常(攜帶者)女性(_B_b),正常女性(_B_B),色盲男性(_bY),正常男性(_BY)。由此可見,色盲是伴_隱性遺傳病,男性只要他的_上有b基因就會色盲,而女性必須同時具有雙重的b才會患病,所以,患男>患女。

5、色盲的遺傳特點:男性多於女性一般地說,色盲這種病是由男性透過他的女兒(不病)遺傳給他的外孫子(隔代遺傳、交叉遺傳)。色盲基因不能由男性傳給男性)。

6、血友病簡介:症狀——血液中缺少一種凝血因子,故凝血時間延長,或出血不止;血友病也是一種伴_隱性遺傳病,其遺傳特點與色盲完全一樣。

高三生物知識點2

1、蛋白質功能:

①結構蛋白,如肌肉、羽毛、頭髮、蛛絲

②催化作用,如絕大多數酶

③運輸載體,如血紅蛋白

④傳遞資訊,如胰島素

⑤免疫功能,如抗體

2、氨基酸結合方式是脫水縮合:一個氨基酸分子的羧基(—COOH)與另一個氨基酸分子的氨基(—NH2)相連線,同時脫去一分子水,如圖:

HOHHH

NH2—C—C—OH+H—N—C—COOHH2O+NH2—C—C—N—C—COOH

R1HR2R1OHR2

3、多糖,蛋白質,核酸等都是生物大分子,組成單位依次為:單糖、氨基酸、核苷酸。

生物大分子以碳鏈為基本骨架,所以碳是生命的核心元素。

4、細胞內水的存在形式為結合水和自由水

自由水(95.5%):良好溶劑;參與生物化學反應;提供液體環境;運送營養物質及代謝廢物;綠色植物進行光合作用的原料

結合水(4.5%):組成細胞的成分之一

5、細胞膜和其他生物膜都是選擇透過性膜

自由擴散:高濃度→低濃度,如H2O,O2,CO2,甘油,乙醇、苯

協助擴散:載體蛋白質協助,高濃度→低濃度,如葡萄糖進入紅細胞

高三生物知識點3

1、美國科學家薩姆納透過實驗證實酶是一類具有催化作用的蛋白質,科學家切赫和奧特曼發現少數RNA也具有生物催化作用。總之,酶是活細胞產生的一類催化作用的有機物,胃蛋白酶、唾液澱粉酶等絕大多數的酶是蛋白質,少數的酶是RNA。不能說所有的蛋白質和RNA都是酶,只是具有催化作用的蛋白質或RNA,才稱為酶。酶的特性有高效性、專一性、需要適宜的條件。

2、進行有關的實驗和探究,學會控制自變數,觀察和檢測因變數的變化,以及設定對照組和重複實驗。

3、ATP中文名叫三磷酸腺苷,結構式簡寫A-p~p~p,幾乎所有生命活動的能量直接來自ATP的水解,由ADP合成ATP所需能量,動物來自呼吸作用,植物來自光合作用和呼吸作用,ATP可在細胞器線粒體或葉綠體中和在細胞質基質中合成。在細胞內ATP含量很少,轉化很快,熟悉89頁圖。

4、構成生物體的活細胞,內部時刻進行著ATP與ADP的相互轉化,同時也就伴隨有能量的釋放X和儲存X。故把ATP比喻成細胞內流通著的"通用貨幣"

高三生物知識點4

基因工程的基本操作程式

第一步:目的基因的'獲取

1、目的基因是指:編碼蛋白質的結構基因。

2、原核基因採取直接分離獲得,真核基因是人工合成。人工合成目的基因的常用方法有反轉錄法和化學合成法。

3、PCR技術擴增目的基因

(1)原理:DNA雙鏈複製

(2)過程:第一步:加熱至90~95℃DNA解鏈;第二步:冷卻到55~60℃,引物結合到互補DNA鏈;第三步:加熱至70~75℃,熱穩定DNA聚合酶從引物起始互補鏈的合成。

第二步:基因表達載體的構建

1、的:使目的基因在受體細胞中穩定存在,並且可以遺傳至下一代,使目的基因能夠表達和發揮作用。

2、組成:目的基因+啟動子+終止子+標記基因

(1)啟動子:是一段有特殊結構的DNA,位於基因的首端,是RNA聚合酶識別和結合的部位,能驅動基因轉錄出mRNA,最終獲得所需的蛋白質。

(2)終止子:也是一段有特殊結構的DNA,位於基因的尾端。

(3)標記基因的作用:是為了鑑定受體細胞中是否含有目的基因,從而將含有目的基因的細胞篩選出來。常用的標記基因是抗生素基因。

第三步:將目的基因匯入受體細胞_

1、轉化的概念:是目的基因進入受體細胞內,並且在受體細胞內維持穩定和表達的過程。

2、常用的轉化方法:

將目的基因匯入植物細胞:採用最多的方法是農桿菌轉化法,其次還有基因槍法和花粉管通道法等。

將目的基因匯入動物細胞:最常用的方法是顯微注射技術。此方法的受體細胞多是受精卵。將目的基因匯入微生物細胞:

3、重組細胞匯入受體細胞後,篩選含有基因表達載體受體細胞的依據是標記基因是否表達。

第四步:目的基因的檢測和表達

1、首先要檢測轉基因生物的染色體DNA上是否插入了目的基因,方法是採用DNA分子雜交技術。

2、其次還要檢測目的基因是否轉錄出了mRNA,方法是採用用標記的目的基因作探針與mRNA雜交。

3、最後檢測目的基因是否翻譯成蛋白質,方法是從轉基因生物中提取蛋白質,用相應的抗體進行抗原—抗體雜交。

高三生物知識點5

透過激素的調節

1、體液調節中,激素調節起主要作用。

2、人體主要激素及其作用

3、激素間的相互關係:

協同作用:如甲狀腺激素與生長激素

拮抗作用:如胰島素與胰高血糖素

4、激素調節的例項:例項一、血糖平衡的調節,(甲狀腺激素分泌的分級調節:課本P28)

1)、血糖的含義:血漿中的葡萄糖(正常人空腹時濃度:3.9-6.1mmol/L)

2)、血糖的來源和去路:

3)、調節血糖的激素:

(1)胰島素:(降血糖)分泌部位:胰島B細胞

作用機理:

①促進血糖進入組織細胞,並在組織細胞內氧化分解、合成糖元、轉變成脂肪酸等非糖物質。

②抑制肝糖元分解和非糖物質轉化為葡萄糖(抑制2個來源,促進3個去路)

(2)胰高血糖素:(升血糖)分泌部位:胰島A細胞

作用機理:促進肝糖元分解和非糖物質轉化為葡萄糖(促進2個來源)

4)、血糖平衡的調節:(負反饋)

血糖升高→胰島B細胞分泌胰島素→血糖降低

血糖降低→胰島A細胞分泌胰高血糖素→血糖升高

5)血糖不平衡:過低—低血糖病;過高—糖尿病

6)糖尿病

病因:胰島B細胞受損,導致胰島素分泌不足

症狀:多飲、多食、多尿和體重減少(三多一少)

防治:調節控制飲食、口服降低血糖的藥物、注射胰島素

檢測:斐林試劑、尿糖試紙

7)反饋調節:在一個系統中,系統本身工作的效果,反過來又作為資訊調節該系統的工作,這種調節凡是叫做反饋調節。反饋調節是生命系統中非常普遍的調節機制,它對於機體維持穩態具有重要意義。

正反饋:反饋資訊與原輸入資訊起相同的作用,使輸出資訊進一步增強的調節。

負反饋:反饋資訊與原輸入資訊起相反的作用,使輸出資訊減弱的調節。

例項二、甲狀腺激素分泌的分級調節

5.激素調節的特點:

1)微量和高效

2)透過體液運輸

3)作用於靶器官、靶細胞

高三生物知識點6

1細胞是生物體結構和功能的基本單位

2.生命系統的結構層次是生物圈、生態系統、群落、種群、個體、系統、器官、組織、細胞。

3.核細胞:分為細胞膜、細胞質、擬核(無核膜,並不是真正的細胞核)[大腸桿菌/肺炎雙球菌/硝化細菌]

4.核細胞:分為細胞膜、細胞質、細胞核等[水綿-綠藻/傘藻/草履蟲/變形蟲//酵母菌/蛔蟲]

5.學家根據有無以核膜為界限的細胞核,將細胞分為原核細胞和真核細胞原核細胞細胞壁核結構細胞器染色體種類較小(1-10微米)沒有成形的細胞核,組成核的物質集中在擬核,無核膜、核仁核糖體無原核生物(細菌、放線菌、藍藻)真核細胞較大(10-100微米)有成形的細胞核,組成核的物質集中在擬核,有核膜、核仁多種細胞器有真核生物(植物、動物、真菌-蘑菇)

6.學顯微鏡的操作步驟:對光→低倍物鏡觀察(視野亮)→移動視野中央(偏左移左)→高倍物鏡觀察(視野暗):①只能調節細準焦螺旋;②調節大光圈、凹面鏡

7.胞學說建立者是施萊登和施旺,細胞學說建立揭示了細胞的統一性和生物體結構的統一性。細胞學說建立過程,是一個在科學探究中開拓、繼承、修正和發展的過程,充滿耐人尋味的曲折。

高三生物知識點7

名詞:

1、微量元素:生物體必需的,含量很少的元素。如:Fe(鐵)、Mn(門)、B(碰)、Zn(醒)、Cu(銅)、Mo(母),巧第一章、生命的物質基礎

記:鐵門碰醒銅母(驢)。

2、大量元素:生物體必需的,含量佔生物體總重量萬分之一以上的元素。如:C(探)、0(洋)、H(親)、N(丹)、S(留)、P(人people)、Ca(蓋)、Mg(美)K(家)巧記:洋人探親,丹留人蓋美家。

3、統一性:組成細胞的化學元素在非生物界都可以找到,這說明了生物界與非生物界具有統一性。

4、差異性:組成生物體的化學元素在細胞內的含量與在非生物界中的含量明顯不同,說明了生物界與非生物界存在著差異性。

語句:1、地球上的生物現在大約有200萬種,組成生物體的化學元素有20多種。

2、生物體生命活動的物質基礎是指組成生物體的各種元素和化合物。

3、組成生物體的化學元素的重要作用:

①C、H、O、N、P、S6種元素是組成原生質的主要元素,大約佔原生質的97%。

②.有的參與生物體的組成。

③有的微量元素能影響生物體的生命活動(如:B能夠促進花粉的萌發和花粉管的伸長。當植物體內缺B時,花葯和花絲萎縮,花粉發育不良,影響受精過程。)

ATP的主要來源------細胞呼吸

一、相關概念:

1.呼吸作用(也叫細胞呼吸):指有機物在細胞內經過一系列的氧化分解,最終生成二氧化碳或其它產物,釋放出能量並生成ATP的過程。根據是否有氧參與,分為有氧呼吸和無氧呼吸。

2.有氧呼吸:指細胞在有氧的參與下,透過多種酶的催化作用下,把葡萄糖等有機物徹底氧化分解,產生二氧化碳和水,釋放出大量能量,生成ATP的過程。

3.無氧呼吸:一般是指細胞在無氧的條件下,透過酶的催化作用,把葡萄糖等有機物分解為不徹底的氧化產物(酒精、CO2或乳酸),同時釋放出少量能量的過程。

4.發酵:微生物(如:酵母菌、乳酸菌)的無氧呼吸。

二、有氧呼吸的總反應式:

酶C6H12O6+6O2+6H2O6CO2+12H2O+能量

二、無氧呼吸的總反應式:

(酵母菌、植物細胞在無氧條件下的呼吸)

(動物骨骼肌細胞、馬鈴薯塊莖、甜菜塊根等細胞的無氧呼吸)

三、影響呼吸速率的外界因素:

1.溫度:溫度透過影響細胞內與呼吸作用有關的酶的活性來影響細胞的呼吸作用。

溫度過低或過高都會影響細胞正常的呼吸作用。在一定溫度範圍內,溫度越低,細胞呼吸越弱;溫度越高,細胞呼吸越強。

2.氧氣:氧氣充足,則無氧呼吸將受抑制;氧氣不足,則有氧呼吸將會減弱。

3.水分:一般來說,細胞水分充足,呼吸作用將增強。但陸生植物根部如長時間受水浸沒,根部細胞缺氧,進行無氧呼吸,產生過多酒精,可使根部細胞壞死。

4.CO2:環境CO2濃度提高,將抑制細胞呼吸,可用此原理來貯藏水果和蔬菜。

高三生物知識點8

1、生物與環境之間是相互依賴、相互制約的,也是相互影響、相互作用的。生物與環境是一個不可分割的統一整體。

2、在一定區域內的生物,同種的個體形成種群,不同的種群形成群落。種群的各種特徵、種群數量的變化和生物群落的結構,都與環境中的各種生態因素有著密切的關係。

3、在各種型別的生態系統中,生活著各種型別的生物群落。在不同的生態系統中,生物的種類和群落的結構都有差別。但是,各種型別的生態系統在結構和功能上都是統一的整體。

4、生態系統中能量的源頭是陽光。生產者固定的太陽能的總量便是流經這個生態系統的總能量。這些能量是沿著食物鏈(網)逐級流動的。

5、對一個生態系統來說,抵抗力穩定性與恢復力穩定性之間往往存在著相反的關係。

6、地球上所有的生物與其無機環境一起,構成了這個星球上的生態系統——生物圈

7、生物圈的形成是地球的理化環境與生物長期相互作用的結果。

8、生物圈是地球上生物與環境共同進化的產物,是生物與無機環境相互作用而形成的統一整體。

9、生物圈的結構和功能能長期維持相對穩定的狀態,這一現象稱為生物的穩態。

10、從能量角度來看,源源不斷的太陽能是生物圈維持正常運轉的動力。這是生物圈賴以存在的能量基礎。

高三生物知識點9

名詞:

1、植物的礦質營養:是指植物對礦質元素的吸收、運輸和利用。

2、礦質元素:一般指除了C、H、O以外,主要由根系從土壤中吸收的元素。植物必需的礦質元素有13種.其中大量元素7種N、S、P、Ca、Mg、K(Mg是合成葉綠素所必需的一種礦質元素)巧記:丹留人蓋美家。Fe、Mn、B、Zn、Cu、Mo、Cl屬於微量元素,巧記:鐵門碰醒銅母(驢)。

3、交換吸附:根部細胞表面吸附的陽離子、陰離子與土壤溶液中陽離子、陰離子發生交換的過程就叫交換吸附。

4、選擇吸收:指植物對外界環境中各種離子的吸收所具有的選擇性。它表現為植物吸收的離子與溶液中的離子數量不成比例。

5、合理施肥:根據植物的需肥規律,適時地施肥,適量地施肥。

語句:

1、根對礦質元素的吸收①吸收的狀態:離子狀態②吸收的部位:根尖成熟區表皮細胞。③、細胞吸收礦質元素離子可以分為兩個過程:一是根細胞表面的陰、陽離子與土壤溶液中的離子進行交換吸附;二是離子被主動運輸進入根細胞內部,根進行離子的交換需要的HCO-和H+是根細胞呼吸作用產生的CO2與水結合後理解成的,根細胞主動運輸吸收離子要消耗能量。④影響根對礦質元素吸收的因素:a、呼吸作用:為交換吸附提供HCO-和H+,為主動運輸供能,因此生產上需要疏鬆土壤;b、載體的種類是決定是否吸收某種離子,載體的數量是決定吸收某種離子的多少,因此,根對吸收離子有選擇性。氧氣和溫度(影響酶的活性)都能影響呼吸作用。

2、植物成熟區表皮細胞吸收礦質元素和滲透吸水是兩個相對獨立的過程。①吸收部位:都為成熟區表皮細胞。②吸收方式:根對水分的吸收---滲透吸水,根對礦質元素的吸收----主動運輸。③、所需條件:根對水分的吸收----半透膜和半透膜兩側的濃度差,根對礦質元素的吸收----能量和載體。④聯絡:礦質離子在土壤中溶於水,進入植物體後,隨水運到各個器官,植物成熟區表皮細胞吸收礦質元素和滲透吸水是兩個相對獨立的過程。

3、礦質元素的運輸和利用:①運輸:隨水分的運輸到達植物體的各部分。②利用形式:礦質運輸的利用,取決於各種元素在植物體內的存在形式。K在植物體內以離子狀態的形式存在,很容易轉移,能反覆利用,如果植物體缺乏這類元素,首先在老的部位出現病態;N、P、Mg在植物體內以不穩定化合物的形式存在,能轉移,能多次利用,如果植物體缺乏這類元素,首先在老的部位出現病態;Ca、Fe在植物體內以穩定化合物的形式存在,不能轉移,不能再利用,一旦缺乏時,幼嫩的部分首先呈現病態。

4、合理灌溉的依據:不同植物對各種必需的礦質元素的需要量不同;同一種植物在不同的生長髮育時期,對各種必需的礦質元素的需要量也不同。

5、根細胞吸收礦質元素離子與呼吸作用相關,在一定的氧氣範圍內,呼吸作用越強,根吸收的礦質元素離子就越多,達到一定程度後,由於細胞膜上的載體的數量有限,根吸收礦質元素離子就不再隨氧氣的增加而增加。

高三生物知識點10

細胞增殖細胞增殖是生物的重要生命特徵。細胞以分裂方式增殖,透過它,單細胞生物能產生後代,多細胞生物則可以由一個受精卵經過分裂和分化,最終發育為一個多細胞個體。在增殖過程中可以將複製的遺傳物質分配到兩個子細胞中去,可見,細胞增殖是生物體生長、發育、繁殖、遺傳的基礎。

真核細胞的分裂方式有有絲分裂、無絲分裂和減數分裂。

一、有絲分裂

體細胞的有絲分裂具有細胞週期,它是指連續分裂的細胞從一次分裂開始時開始,到下一次分裂完成時為此,包括分裂間期期和分裂期。

1、分裂間期

分裂間期特徵是DNA分子的複製和有關蛋白質的合成,同時細胞有適度的增長,對於細胞分裂來說,它是整個週期中為分裂期作準備的階段。

2、分裂期

(1)前期

最明顯的變化是染色質絲螺旋纏繞,縮短變粗,成為染色體,此時每條染色體都含有兩條染色單體,由一個著絲點相連,稱為姐妹染色單體。同時,核仁解體,核摸消失,紡錘絲形成紡錘體。

(2)中期

染色體清晰可見,每條染色體的著絲點都排列在細胞中央的一個平面上,染色體的形態比較穩定,數目比較清晰,便於觀察。

(3)後期

每個著絲點一分為二,姐妹染色單體隨之分離,形成兩條子染色體,在紡錘絲的牽引下向細胞兩極運動。

(4)末期

染色體到達兩極後,逐漸變成絲狀的染色質,同時紡錘體消失,核仁、核模重新出現,將染色質包圍起來,形成兩個新的子細胞,然後細胞一分為二。

(5)動植物細胞有絲分裂比較

高三生物知識點11

(1)植物基因工程:抗蟲、抗病、抗逆轉基因植物,利用轉基因改良植物的品質。

基因工程與作物育種(抗蟲農作物)

單倍體育種方法:花葯離體培養獲得單倍體植株,再人工誘導染色體數目加倍。

單倍體育種優點:明顯縮短育種年限,後代都是純合體。

(2)動物基因工程:提高動物生長速度、改善畜產品品質、用轉基因動物生產藥物。

基因工程與藥物研製(胰島素、干擾素和乙肝疫苗等)

(3)基因治療:把正常的外源基因匯入病人體內,使該基因表達產物發揮作用。

(4)基因工程與環境保護

親子鑑定:利用醫學、生物學和遺傳學的理論和技術,從子代和親代的形態構造或生理機能方面的相似特點,分析遺傳特徵,判斷父母與子女之間是否是親生關係。

使用國產製劑進行親子鑑定

鑑定親子關係目前用得最多的是DNA分型鑑定。人的血液、毛髮、唾液、口腔細胞及骨頭等都可以用於親子鑑定,十分方便。

利用DNA進行親子鑑定,只要作十幾至幾十個DNA位點作檢測,如果全部一樣,就可以確定親子關係,如果有3個以上的位點不同,則可排除親子關係,有一兩個位點不同,則應考慮基因突變的可能,加做一些位點的檢測進行辨別。DNA親子鑑定,否定親子關係的準確率幾近100%,肯定親子關係的準確率可達到99.99%。

(5)基因晶片的基本原理:就是最基本的DNA分子雜交,利用基因晶片檢測某種基因時,先將待測樣品製成熒游標記的DNA探針,讓它與基因晶片上已知序列的DNA段雜交,雜交訊號經放大後輸入計算機進行統計分析,這樣就可以檢測出樣品DNA序列。

用途:用來檢測基因表達的變化、分析基因序列、尋找新的基因和新的藥物分子。利用基因晶片,可以比較同一物種不同個體或物種之間,以及同一個體在不同生長髮育階段、正常和疾病狀態下基因表達的差異,尋找和發現新的基因,研究基因的功能以及生物體在進化、發育、遺傳等過程中的規律。

高三生物知識點12

1.DNA複製的意義:使遺傳資訊從親代傳給子代,從而保持了遺傳資訊的連續性。

DNA複製的特點:半保留複製,邊解旋邊複製,多起點多片段

2.基因是:控制生物性狀的遺傳物質的基本單位,是有遺傳效應的DNA段。

3.基因的表達是指:基因使遺傳資訊以一定的方式反映到蛋白質的分子結構上,從而使後代表現出與親代相同的性狀。包括轉錄和翻譯兩階段。

4.遺傳資訊的傳遞過程:

DNARNA蛋白質

5.基因自由組合定律的實質:

位於非同源染色體上的非等位基因的分離或組合是互不干擾的。在進行減數分裂形成配子的過程中,同源染色體上的等位基因彼此分離,同時,非同源染色體上非等位基因自由組合。

(分離定律呢?)

6.基因突變是指:由於DNA分子發生鹼基對的增添,缺失或改變,而引起的基因結構的改變。

發生時間:有絲分裂間期或減數第一次分裂間期的DNA複製時。

意義:生物變異的根本來源,為生物進化提供了最初原材料。

7.基因重組是指:在生物體進行有性生殖的過程中,控制不同性狀的基因的重新組合。

發生時間:減數第一次分裂前期或後期。

意義:為生物變異提供了極其豐富的來源。這是形成生物多樣性的重要原因之一對生物的進化有重要意義。

8.可遺傳變異的三種來源:基因突變、基因重組、染色體變異。

9.性別決定:雌雄異體的生物決定性別的方式。

10.染色體組:細胞中的一組非同源染色體,它們在形態和功能上各不相同,但是攜帶著控制一種生物生長髮育、遺傳和變異的全部資訊,這樣的一組染色體叫一個染色體組。

單倍體基因組:由24條雙鏈的DNA組成(包括1-22號常染色體DNA與X、Y性染色體DNA)

人類基因組:人體DNA所攜帶的全部遺傳資訊。

人類基因組計劃主要內容:繪製人類基因組四張圖:遺傳圖、物理圖、序列圖、轉錄圖。

DNA測序是測DNA上所有鹼基對的序列。

高三生物知識點13

dna雙螺旋結構特點

①兩條DNA互補鏈反向平行。

②由脫氧核糖和磷酸間隔相連而成的親水骨架在螺旋分子的外側,而疏水的鹼基對則在螺旋分子內部,鹼基平面與螺旋軸垂直,螺旋旋轉一週正好為10個鹼基對,螺距為3。4nm,這樣相鄰鹼基平面間隔為0。34nm並有一個36的夾角。

③DNA雙螺旋的表面存在一個大溝(major groove)和一個小溝(minor groove),蛋白質分子透過這兩個溝與鹼基相識別。

④兩條DNA鏈依靠彼此鹼基之間形成的氫鍵而結合在一起。根據鹼基結構特徵,只能形成嘌呤與嘧啶配對,即A與T相配對,形成2個氫鍵;G與C相配對,形成3個氫鍵。因此G與C之間的連線較為穩定。

⑤DNA雙螺旋結構比較穩定。維持這種穩定性主要靠鹼基對之間的氫鍵以及鹼基的堆集力(stacking force)。

dna雙螺旋結構

DNA的雙螺旋結構,脫氧核糖與磷酸相間排列在外側,形成兩條主鏈(反向平行),構成DNA的基本骨架。兩條主鏈之間的橫檔是鹼基對,排列在內側。相對應的兩個鹼基透過氫鍵連結形成鹼基對,DNA一條鏈上的鹼基排列順序確定了,根據鹼基互補配對原則,另一條鏈的鹼基排列順序也就確定了。

dna雙螺旋結構模型要點

(1)兩條多核苷酸鏈以相反的平行纏結,依賴成對的鹼基上的氫鍵結合形成雙螺旋狀,親水的脫氧核糖基和磷酸基骨架位於雙鏈的外側,而鹼基位於內側,兩條鏈的鹼基之間以氫鍵相結合,一條鏈的走向是5’到3’,另一條鏈的走向是3’到5’;

(2)鹼基平面向內延伸,與雙螺旋鏈成垂直狀;

(3)向右旋,順長軸方向每隔0。34nm有一個核苷酸,每隔3。4nm重複出現同一結構;

(4)A與T配對,其間距離1。11nm;G與C配對,其間距離為1。08nm,兩者距離幾乎相等,以便保持鏈間距離相等;

(5)在結構上有深溝和淺溝;

(6)DNA雙螺旋結構穩定的維繫橫向穩定靠兩條鏈間互補鹼基的氫鍵維繫,縱向則靠鹼基平面間的疏水性遞積力維持。

高三生物知識點14

1、酶:是活細胞(來源)所產生的具有催化作用(功能)的一類有機物。大多數酶的化學本質是蛋白質(合成酶的場所主要是核糖體,水解酶的酶是蛋白酶),也有的是RNA。

2、酶促反應:酶所催化的反應。

3、底物:酶催化作用中的反應物叫做底物。

語句:1、酶的發現:①、1783年,義大利科學家斯巴蘭讓尼用實驗證明:胃具有化學性消化的作用;②、1836年,德國科學家施旺從胃液中提取了胃蛋白酶;③、1926年,美國科學家薩姆納透過化學實驗證明脲酶是一種蛋白質;④20世紀80年代,美國科學家切赫和奧特曼發現少數RNA也具有生物催化作用。

2、酶的特點:在一定條件下,能使生物體內複雜的化學反應迅速地進行,而反應前後酶的性質和質量並不發生變化。

3、酶的特性:①高效性:催化效率比無機催化劑高許多。②專一性:每種酶只能催化一種或一類化合物的化學反應。③酶需要適宜的溫度和pH值等條件:在最適宜的溫度和pH下,酶的活性最高。溫度和pH偏高和偏低,酶的活性都會明顯降低。原因是過酸、過鹼和高溫,都能使酶分子結構遭到破壞而失去活性。

4、酶是活細胞產生的,在細胞內外都起作用,如消化酶就是在細胞外消化道內起作用的;酶對生物體內的化學反應起催化作用與調節人體新陳代謝的激素不同;雖然酶的催化效率很高,但它並不被消耗;酶大多數是蛋白質,它的合成受到遺傳物質的控制,所以酶的決定因素是核酸。

5、既要除去細胞壁的'同時不損傷細胞內部結構,正確的思路是:細胞壁的主要成分是纖維素、酶具有專一性,去除細胞壁選用纖維素酶使其分解。血液凝固是一系列酶促反應過程,溫度、酸鹼度都能影響酶的催化效率,對於動物體內酶催化的最適溫度是動物的體溫,動物的體溫大都在35℃左右。

6、通常酶的化學本質是蛋白質,主要在適宜條件下才有活性。胃蛋白酶是在胃中對蛋白質的水解起催化作用的。胃蛋白酶只有在酸性環境(最適PH=2左右)才有催化作用,隨pH升高,其活性下降。當溶液中pH上升到6以上時,胃蛋白酶會失活,這種活性的破壞是不可逆轉的。

第二節新陳代謝與ATP

語句:1、ATP的結構簡式:ATP是三磷酸腺苷的英文縮寫,結構簡式:A-P~P~P,其中:A代表腺苷,P代表磷酸基,~代表高能磷酸鍵,-代表普通化學鍵。注意:ATP的分子中的高能磷酸鍵中儲存著大量的能量,所以ATP被稱為高能化合物。這種高能化合物在水解時,由於高能磷酸鍵的斷裂,必然釋放出大量的能量。這種高能化合物形成時,即高能磷酸鍵形成時,必然吸收大量的能量。

2、ATP與ADP的相互轉化:在酶的作用下,ATP中遠離A的高能磷酸鍵水解,釋放出其中的能量,同時生成ADP和Pi;在另一種酶的作用下,ADP接受能量與一個Pi結合轉化成ATP。ATP與ADP相互轉變的反應是不可逆的,反應式中物質可逆,能量不可逆。ADP和Pi可以迴圈利用,所以物質可逆;但是形成ATP時所需能量絕不是ATP水解所釋放的能量,所以能量不可逆。(具體因為:(1)從反應條件看,ATP的分解是水解反應,催化反應的是水解酶;而ATP是合成反應,催化該反應的是合成酶。酶具有專一性,因此,反應條件不同。(2)從能量看,ATP水解釋放的能量是儲存在高能磷酸鍵內的化學能;而合成ATP的能量主要有太陽能和化學能。因此,能量的來源是不同的。(3)從合成與分解場所的場所來看:ATP合成的場所是細胞質基質、線粒體(呼吸作用)和葉綠體(光合作用);而ATP分解的場所較多。因此,合成與分解的場所不盡相同。)

3、ATP的形成途徑:對於動物和人來說,ADP轉化成ATP時所需要的能量,來自細胞內呼吸作用中分解有機物釋放出的能量。對於綠色植物來說,ADP轉化成ATP時所需要的能量,除了來自呼吸作用中分解有機物釋放出的能量外,還來自光合作用。

4、ATP分解時的能量利用:細胞分裂、根吸收礦質元素、肌肉收縮等生命活動。

5、ATP是新陳代謝所需能量的直接來源。

高三生物知識點15

第一節:細胞中的元素和化合物

一、組成生物體的化學元素

組成生物體的化學元素雖然大體相同,但是含量不同。根據組成生物體的化學元素,在生物體內含量的不同,可分為大量元素和微量元素。其中大量元素有CHONPSKCaMg;微量元素有FeMnZnCuBMo等

二、組成生物體的化學元素的重要作用

大量元素中,CHON是構成細胞的基本元素,其中碳是最基本的元素;微量元素在生物體內的含量雖然極少,卻是維持正常生命活動不可缺少的。

三、生物界與非生物界的統一性和差異性

組成生物體的化學元素,在自然界中都可以找到,沒有一種是生物界所特有的。這個事實說明生物界與非生物界具有統一性;組成生物體的化學元素,在生物體內和在無機自然界中的含量相差很大。這個事實說明生物界與非生物界具有差異性。

四、構成細胞的化合物P17

無機化合物

:葡萄糖、脫氧核糖、糖原等;

:卵磷脂、性激素、膽固醇等;

:胰島素、抗體、血紅蛋白等;

有機化合物:、。

第二節:蛋白質

蛋白質的基本組成單位是氨基酸,生物體中組成蛋白質的氨基酸大約有20種,在結構上都符合結構通式。氨基酸分子間以肽鍵的方式互相結合。由兩個氨基酸分子縮合而成的化合物稱為二肽,由多個氨基酸分子縮合而成的化合物稱為多肽,其通常呈鏈狀結構,稱為肽鏈。一個蛋白質分子可能含有一條或幾條肽鏈,透過盤曲、摺疊形成複雜(特定)的空間結構。蛋白質分子結構具有多樣性的特點,其原因是:構成蛋白質的氨基酸種類不同數目成百上千、氨基酸排列順序千變萬化、多肽鏈盤曲摺疊的方式不同、多肽鏈形成的空間結構千差萬別。由於結構的多樣性,蛋白質在功能上也具有多樣性的特點,其功能主要如下:(1)結構蛋白,如肌肉、載體蛋白、血紅蛋白;(2)資訊傳遞,如胰島素(3)免疫功能,如抗體;(4)大多數酶是蛋白質如胃蛋白酶(5)細胞識別,如細胞膜上的糖蛋白。總而言之,一切生命活動都離不開蛋白質,蛋白質是生命活動的主要承擔者。

第三節:核酸

核酸是遺傳資訊的載體,是一切生物的遺傳物質,對於生物體的遺傳和變異、蛋白質的生物合成有極其重要作用。核酸包括脫氧核糖核酸(DNA)和核糖核酸(RNA)兩大類,基本組成單位是核苷酸,由一分子含氮鹼基、一分子五碳糖和一分子磷酸組成。組成核酸的鹼基有5種,五碳糖有2種,核苷酸有8種。

脫氧核糖核酸簡稱DNA,主要存在於細胞核中,細胞質中的線粒體和葉綠體也是它的載體。

核糖核酸簡稱RNA,主要存在於細胞質中。對於有細胞結構的生物,其遺傳物質就是DNA;沒有細胞結構的病毒,有的遺傳物質是DNA如:噬菌體等;有的遺傳物質是RNA如:菸草花葉病毒等

第四節:細胞中的糖類和脂質

糖類分子都是由C、H、O三種元素組成。糖類是細胞的主要能源物質。

糖類可分為單糖、二糖和多糖等幾類。單糖是不能再水解的糖,常見的有葡萄糖、果糖、半乳糖、核糖、脫氧核糖,其中葡萄糖是細胞的重要能源物質,核糖和脫氧核糖一般不作為能源物質,它們是核酸的組成成分;二糖中蔗糖和麥芽糖是植物糖,乳糖、糖原是動物糖;多糖中糖原是動物糖,澱粉和纖維素是植物糖,糖原和澱粉是細胞中重要的儲能物質。

脂質主要是由CHO3種化學元素組成,有些還含有P(如磷脂)。脂質包括脂肪、磷脂、和固醇、。脂肪是生物體內的儲能物質。除此以外,脂肪還有保溫、緩衝、減壓的作用;磷脂是構成包括細胞膜在內的膜物質重要成分;固醇類物質主要包括膽固醇、性激素、維生素D等,這些物質對於生物體維持正常的生命活動,起著重要的調節作用。

多糖、蛋白質、核酸等都是生物大分子,組成它們的基本單位分別是單糖(葡萄糖)、氨基酸和核苷酸,這些基本單位稱為單體,這些生物大分子就稱為單體的多聚體,每一個單體都以若干個相連的碳原子構成的碳鏈為基本骨架,由許多單體連線成多聚體。

第五節:細胞中的無機物

水是活細胞中含量最多的化合物。不同種類的生物體中,水的含量不同;不同的組織、器官中,水的含量也不同。

細胞中水的存在形式有自由水和結合水兩種,結合水與其他物質相結合,是細胞結構的重要組成成分,約佔4.5%;自由水以遊離的形式存在,是細胞的良好溶劑,也可以直接參與生物化學反應,還可以運輸營養物質和廢物。總而言之,各種生物體的一切生命活動都離不開水。

細胞內無機鹽大多數以離子狀態存在,其含量雖然很少,但卻有多方面的重要作用:有些無機鹽是細胞內某些複雜化合物的重要組成成分,如Fe是血紅蛋白的主要成分,Mg是葉綠素分子必需的成分;許多無機鹽離子對於維持細胞和生物體的生命活動有重要作用,如血液中鈣離子含量太低就會出現抽搐現象;無機鹽對於維持細胞的酸鹼平衡也很重要。

細胞內有機物質的鑑定

糖類中的還原糖(葡萄糖、果糖)能與斐林試劑發生作用,生成磚紅色沉澱;

脂肪可以被蘇丹Ⅳ染成橘黃色;蛋白質與雙縮脲試劑發生作用,產生紫色反應。在還原糖的檢測中,斐林試劑甲液和乙液應等量混合均勻後再使用,並且要水裕加熱;在蛋白質的檢測中,在組織樣液中應先加入雙縮脲試劑A液1ml,再加入雙縮脲試劑B液4滴,不需加熱。

甲基綠能使DNA呈現綠色,吡羅紅能使RNA呈現紅色,因此利用這兩種染色劑將細胞染色,可以顯示DNA和RNA在細胞中的分佈。在此實驗中,鹽酸的作用是改變膜的通透性,加速色素進入細胞。用人的口腔上皮細胞做實驗材料,此實驗的步驟是製片、水解、沖洗塗片、染色、觀察