查文庫>說課稿> 新版高中數學一等獎說課稿(通用5篇)

新版高中數學一等獎說課稿

新版高中數學一等獎說課稿(通用5篇)

  作為一位兢兢業業的人民教師,通常需要用到說課稿來輔助教學,說課稿有助於提高教師的語言表達能力。那麼大家知道正規的說課稿是怎麼寫的嗎?下面是小編幫大家整理的新版高中數學一等獎說課稿(通用5篇),歡迎閱讀,希望大家能夠喜歡。

  新版高中數學一等獎說課稿1

  一、教材分析:

  1、教材的地位與作用。

  本節資料是在學生學習了"事件的可能性的基礎上來學習如何預測不確定事件(隨機事件)發生的可能性的大小。"用機率預測隨機發生的可能性大小,在日常生活、自然、科技領域有著廣泛的應用,學習本單元知識,無論是今後繼續深造(高中學習機率的乘法定理)還是參加社會實踐活動都是十分必要的。機率的概念比較抽象,機率的定義學生較難理解。

  在教材的處理上,採取小單元教學,本節課安排讓學生了解求隨機事件機率的兩種方法,目的是讓學生能夠比較系統地理解機率的意義及求機率的方法,為下頭學習求比較複雜的情景的機率打下基礎。

  2、重點與難點。

  重點:對機率意義的理解,經過多次重複實驗,用頻率預測機率的方法,以及用列舉法求機率的方法。

  難點:對機率意義的理解和用列舉法求機率過程中在各種可能性相同條件下某一事件可能發生的總數及總的結果數的分析。

  二、目的分析:

  知識與技能:掌握用頻率預測機率和用列舉法求機率方法。

  過程與方法:組織學生自主探究,合作交流,引導學生觀察試驗和統計的結果,進而進行分析、歸納、總結,瞭解並感受機率的定義的過程,引導學生從數學的視角觀察客觀世界,用數學的思維思考客觀世界,以數學的語言描述客觀世界。

  情感態度價值觀:學生經歷觀察、分析、歸納、確認等數學活動,感受數學活動充滿了探索性與創造性,感受量變與質變的對立統一規律,同時為機率的精準、新穎、獨特的思維方法所震撼,激發學生學習數學的熱情,增強對數學價值觀的認識。

  三、教法、學法分析:

  引導學生自主探究、合作交流、觀察分析、歸納總結,讓學生經歷知識(機率定義計算公式)的產生和發展過程,讓學生在數學活動中學習數學、掌握數學,並能應用數學解決現實生活中的實際問題,教師是學生學習的組織者、合作者和指導者,精心設計教學情境,有序組織學生活動,讓課堂充滿生機活力,體現"教"為"學"服務這一宗旨。

  四、教學過程分析:

  1、引導學生探究

  精心設計問題一,學生經過對問題一的探究,一方面複習前面學過的"確定事件和不確定事件"的知識,為學好本節資料理清知識障礙,二是讓學生明確為什麼要學習機率(如何預測隨機事件可能性發生大小)。引導學生對問題二的探究與觀察實驗資料,使學生了解機率這一重要概念的實際背景,感受並相信隨機事件的發生中存在著統計規律性,感受數學規律的真實的發現過程。

  2、歸納概括

  學生從試驗中得到的統計數字及機率呈現穩定在某一數值附近這一規律,讓學生明確機率定義的由來。

  引導學生重新對問題一和問題二的探究,分析某事件發生的各種可能性在全部可能發生結果中所佔比例,得到用列舉法求機率的公式,引導學生進行理性思維,邏輯分析,既培養學生的分析問題本事,又讓學生明確用列舉法求機率這一簡便快捷方法的合理性。

  3、舉例應用

  ⑴引導學生對教材書例題、問題一、問題二中問題的進一步分析與探究,讓學生掌握用列舉法求機率的方法。

  ⑵引導學生對練習中的問題思考與探究,鞏固對機率公式的應用及加深對機率意義的理解。

  4、深化發展

  ⑴設定3個小題目,引導學生歸納、分析、總結,加深對知識與方法的理解,並學會靈活運用。

  ⑵讓學生設計活動資料,對知識進行昇華和拓展,引導學生創造性地運用知識思考問題和解決問題,從而培養學生的創新意識和創新本事。

  新版高中數學一等獎說課稿2

  一、教材分析

  集合概念及其基本理論,稱為集合論,是近、現代數學的一個重要的基礎,一方面,許多重要的數學分支,都建立在集合理論的基礎上。另一方面,集合論及其所反映的數學思想,在越來越廣泛的領域種得到應用。

  本節課主要分為兩個部分,一是理解集合的定義及一些基本特徵。二是掌握集合與元素之間的關係。

  二、教學目標

  1、學習目標

  (1)透過例項,瞭解集合的含義,體會元素與集合之間的關係以及理解“屬於”關係;

  (2)能選擇自然語言、圖形語言、集合語言(列舉法或描述法)描述不同的具體問題,感受集合語言的意義和作用;

  2、能力目標

  (1)能夠把一句話一個事件用集合的方式表示出來。

  (2)準確理解集合與及集合內的元素之間的關係。

  3、情感目標

  透過本節的把實際事件用集合的方式表示出來,從而培養數學敏感性,了 解到數學於生活中。

  三、教學重點與難點

  重點 集合的基本概念與表示方法;

  難點 運用集合的兩種常用表示方法———列舉法與描述法,正確表示一些簡單的集合;

  四、教學方法

  (1)本課將採用探究式教學,讓學生主動去探索,激發學生的學習興趣。並分層教學,這樣可顧及到全體學生,達到優生得到培養,後進生也有所收穫的效果;

  (2)學生在老師的引導下,透過閱讀教材,自主學習、思考、交流、討論和概括,從而完成本節課的教學目標。

  五、學習方法

  (1)主動學習法:舉出例子,提出問題,讓學生在獲得感性認識的同時,教師層層深入,啟發學生積極思維,主動探索知識,培養學生思維想象 的綜合能力。

  (2)反饋補救法:在練習中,注意觀察學生對學習的反饋情況,以實現“培優扶差,滿足不同。”

  六、教學思路

  具體的思路如下

  複習的引入:講一些集合的相關數學及相關數學家的經歷故事!這可以讓學生更加了解數學史從何使學生對數學更加感興趣,有助於上課的效率!因為時間關係這裡我就不說相關數學史咯。

  一、 引入課題

  軍訓前學校通知:8月15日8點,高一年段在體育館集合進行軍訓動員;試問這個通知的物件是全體的高一學生還是個別學生?

  在這裡,集合是我們常用的一個詞語,我們感興趣的是問題中某些特定(是高一而不是高二、高三)物件的總體,而不是個別的物件,為此,我們將學習一個新的概念——集合,即是一些研究物件的總體。

  二、 正體部分

  學生閱讀教材,並思考下列問題:

  (1)集合有那些概念?

  (2)集合有那些符號?

  (3)集合中元素的特性是什麼?

  (4)如何給集合分類?

  (一)集合的有關概念

  (1)物件:我們可以感覺到的客觀存在以及我們思想中的事物或抽象符號,

  都可以稱作物件.

  (2)集合:把一些能夠確定的不同的物件看成一個整體,就說這個整體是由

  這些物件的全體構成的集合.

  (3)元素:集合中每個物件叫做這個集合的元素.

  集合通常用大寫的拉丁字母表示,如A、B、C、??元素通常用小寫的拉丁字母表示,如a、b、c、??

  1. 思考:課本P3的思考題,並再列舉一些集合例子和不能構成集合的例子,

  對學生的例子予以討論、點評,進而講解下面的問題。

  2、元素與集合的關係

  (1)屬於:如果a是集合A的元素,就說a屬於A,記作a∈A。(舉例)集合A={2,3,4,6,9}a=2 因此我們知道 a∈A

  (2)不屬於:如果a不是集合A的元素,就說a不屬於A,記作a?A

  要注意“∈”的方向,不能把a∈A顛倒過來寫. (舉例)

  集合A={3,4,6,9}a=2 因此我們知道a?A

  3、集合中元素的特性

  (1)確定性:給定一個集合,任何物件是不是這個集合的元素是確定的了.

  (2)互異性:集合中的元素一定是不同的.

  (3)無序性:集合中的元素沒有固定的順序.

  4、集合分類

  根據集合所含元素個屬不同,可把集合分為如下幾類:

  (1)把不含任何元素的集合叫做空集Ф

  (2)含有有限個元素的集合叫做有限集

  (3)含有無窮個元素的集合叫做無限集

  注:應區分?,{?},{0},0等符號的含義

  5、常用數集及其表示方法

  (1)非負整數集(自然數集):全體非負整數的集合.記作N

  (2)正整數集:非負整數集內排除0的集.記作N*或N+

  (3)整數集:全體整數的集合.記作Z

  (4)有理數集:全體有理數的集合.記作Q

  (5)實數集:全體實數的集合.記作R

  注:(1)自然數集包括數0.

  (2)非負整數集內排除0的集.記作N*或N+,Q、Z、R等其它數集內排

  除0的集,也這樣表示,例如,整數集內排除0的集,表示成Z*

  (二)集合的表示方法

  我們可以用自然語言來描述一個集合,但這將給我們帶來很多不便,除此之外還常用列舉法和描述法來表示集合。

  (1) 列舉法:把集合中的元素一一列舉出來,寫在大括號內。

  如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},?;

  例1.(課本例1)

  思考2,引入描述法

  說明:集合中的元素具有無序性,所以用列舉法表示集合時不必考慮元素的順序。

  (2) 描述法:把集合中的元素的公共屬性描述出來,寫在大括號{}內。 具體方法:在大括號內先寫上表示這個集合元素的一般符號及取值(或變化)範圍,再畫一條豎線,在豎線後寫出這個集合中元素所具有的共同特徵。

  如:{x|x-3>2},{(x,y)|y=x2+1},{直角三角形},?;

  例2.(課本例2)

  說明:(課本P5最後一段)

  思考3:(課本P6思考) 強調:描述法表示集合應注意集合的代表元素

  {(x,y)|y= x2+3x+2}與 {y|y= x2+3x+2}不同,只要不引起誤解,集合的代表元素也可省略,例如:{整數},即代表整數集Z。

  辨析:這裡的{ }已包含“所有”的意思,所以不必寫{全體整數}。下列寫法{實數集},{R}也是錯誤的。

  說明:列舉法與描述法各有優點,應該根據具體問題確定採用哪種表示法,要注意,一般集合中元素較多或有無限個元素時,不宜採用列舉法。

  (三)課堂練習(課本P6練習)

  三、 歸納小結與作業

  本節課從例項入手,非常自然貼切地引出集合與集合的概念,並且結合例項對集合的概念作了說明,然後介紹了集合的常用表示方法,包括列舉法、描述法。

  書面作業:習題1.1,第1- 4題

  新版高中數學一等獎說課稿3

  一、說教材

  1.從在教材中的地位與作用來看

  《等比數列的前n項和》是數列這一章中的一個重要內容,它不僅在現實生活中有著廣泛的實際應用,如儲蓄、分期付款的有關計算等等,而且公式推導過程中所滲透的類比、化歸、分類討論、整體變換和方程等思想方法,都是學生今後學習和工作中必備的數學素養.

  2.從學生認知角度看

  從學生的思維特點看,很容易把本節內容與等差數列前n項和從公式的形成、特點等方面進行類比,這是積極因素,應因勢利導.不利因素是:本節公式的推導與等差數列前n項和公式的推導有著本質的不同,這對學生的思維是一個突破,另外,對於q=1這一特殊情況,學生往往容易忽視,尤其是在後面使用的過程中容易出錯.

  3.學情分析

  教學物件是剛進入高中的學生,雖然具有一定的分析問題和解決問題的能力,邏輯思維能力也初步形成,但由於年齡的原因,思維儘管活躍、敏捷,卻缺乏冷靜、深刻,因此片面、不嚴謹.

  4.重點、難點

  教學重點:公式的推導、公式的'特點和公式的運用.

  教學難點:公式的推導方法和公式的靈活運用.

  公式推導所使用的“錯位相減法”是高中數學數列求和方法中最常用的方法之一,它蘊含了重要的數學思想,所以既是重點也是難點.

  二、說目標

  知識與技能目標:

  理解並掌握等比數列前n項和公式的推導過程、公式的特點,在此基礎上能初步應用公式解決與之有關的問題.

  過程與方法目標:

  透過對公式推導方法的探索與發現,向學生滲透特殊到一般、類比與轉化、分類討論等數學思想,培養學生觀察、比較、抽象、概括等邏輯思維能力和逆向思維的能力.

  情感與態度價值觀:

  透過對公式推導方法的探索與發現,最佳化學生的思維品質,滲透事物之間等價轉化和理論聯絡實際的辯證唯物主義觀點.

  三、說過程

  學生是認知的主體,設計教學過程必須遵循學生的認知規律,儘可能地讓學生去經歷知識的形成與發展過程,結合本節課的特點,我設計瞭如下的教學過程:

  1.創設情境,提出問題

  在古印度,有個名叫西薩的人,發明了國際象棋,當時的印度國王大為讚賞,對他說:我可以滿足你的任何要求.西薩說:請給我棋盤的64個方格上,第一格放1粒小麥,第二格放2粒,第三格放4粒,往後每一格都是前一格的兩倍,直至第64格.國王令宮廷數學家計算,結果出來後,國王大吃一驚.為什麼呢?

  設計意圖:設計這個情境目的是在引入課題的同時激發學生的興趣,調動學習的積極性.故事內容緊扣本節課的主題與重點.

  此時我問:同學們,你們知道西薩要的是多少粒小麥嗎?引導學生寫出麥粒總數.帶著這樣的問題,學生會動手算了起來,他們想到用計算器依次算出各項的值,然後再求和.這時我對他們的這種思路給予肯定.

  設計意圖:在實際教學中,由於受課堂時間限制,教師捨不得花時間讓學生去做所謂的“無用功”,急急忙忙地丟擲“錯位相減法”,這樣做有悖學生的認知規律:求和就想到相加,這是合乎邏輯順理成章的事,教師為什麼不相加而馬上相減呢?在整個教學關鍵處學生難以轉過彎來,因而在教學中應捨得花時間營造知識形成過程的氛圍,突破學生學習的障礙.同時,形成繁難的情境激起了學生的求知慾,迫使學生急於尋求解決問題的新方法,為後面的教學埋下伏筆.

  2.師生互動,探究問題

  在肯定他們的思路後,我接著問:1,2,22,…,263是什麼數列?有何特徵?應歸結為什麼數學問題呢?

  探討1:,記為(1)式,注意觀察每一項的特徵,有何聯絡?(學生會發現,後一項都是前一項的2倍)

  探討2:如果我們把每一項都乘以2,就變成了它的後一項,(1)式兩邊同乘以2則有,記為(2)式.比較(1)(2)兩式,你有什麼發現?

  設計意圖:留出時間讓學生充分地比較,等比數列前n項和的公式推導關鍵是變“加”為“減”,在教師看來這是“天經地義”的,但在學生看來卻是“不可思議”的,因此教學中應著力在這兒做文章,從而抓住培養學生的辯證思維能力的良好契機.

  經過比較、研究,學生髮現:(1)、(2)兩式有許多相同的項,把兩式相減,相同的項就消去了,得到:.老師指出:這就是錯位相減法,並要求學生縱觀全過程,反思:為什麼(1)式兩邊要同乘以2呢?

  設計意圖:經過繁難的計算之苦後,突然發現上述解法,不禁驚呼:真是太簡潔了!讓學生在探索過程中,充分感受到成功的情感體驗,從而增強學習數學的興趣和學好數學的信心.

  3.類比聯想,解決問題

  這時我再順勢引導學生將結論一般化,

  這裡,讓學生自主完成,並喊一名學生上黑板,然後對個別學生進行指導.

  設計意圖:在教師的指導下,讓學生從特殊到一般,從已知到未知,步步深入,讓學生自己探究公式,從而體驗到學習的愉快和成就感.

  對不對?這裡的q能不能等於1?等比數列中的公比能不能為1?q=1時是什麼數列?此時sn=?(這裡引導學生對q進行分類討論,得出公式,同時為後面的例題教學打下基礎.)

  再次追問:結合等比數列的通項公式an=a1qn-1,如何把sn用a1、an、q表示出來?(引導學生得出公式的另一形式)

  設計意圖:透過反問精講,一方面使學生加深對知識的認識,完善知識結構,另一方面使學生由簡單地模仿和接受,變為對知識的主動認識,從而進一步提高分析、類比和綜合的能力.這一環節非常重要,儘管時間有時比較少,甚至僅僅幾句話,然而卻有畫龍點睛之妙用.

  4.討論交流,延伸拓展

  新版高中數學一等獎說課稿4

  一、說設計理念

  《數學課程標準》指出要讓學生感受生活中處處有數學,用數學知識解決生活中的實際問題。

  基於這一理念,我在教學過程中力求聯絡學生生活實際和已有的知識經驗,從學生感興趣的素材,設計新穎的匯入與例題教學,給數學課富予新的生命力。課堂中力求構建一種自主探究、和諧合作的教學氛圍,讓學生經歷知識的探究過程,培養學生感受生活中的數學和用數學知識解決生活問題的能力,體驗數學的應用價值。

  二、教材分析:

  (一)教材的地位和作用

  有關統計圖的認識,小學階段主要認識條形統計圖、折線統計圖和扇形統計圖。考慮到扇形統計圖在日常生活中的廣泛應用,《標準》把它作為必學內容安排在本單元。本單元是在前面學習了條形統計圖和折線統計圖的特點和作用的基礎上進行教學的。主要透過熟悉的事例使學生體會到扇形統計圖的實用價值。

  (二)教學目標

  1、聯絡生活情境瞭解扇形統計圖的特點和作用

  2、能讀懂扇形統計圖,從中獲取有效的資訊。

  3、讓學生在觀察、比較、討論和交流中體會扇形統計圖反映的是整體和部分的關係。

  (三)教學重點:

  1、能讀懂扇形統計圖,理解扇形統計圖的特點和作用,並能從中獲取有效資訊。

  2、認識折線統計圖,瞭解折線統計圖的特點。

  (四)教學難點:

  1、能從扇形統計圖中獲得有用資訊,並做出合理推斷。

  2、能根據統計圖和資料進行資料變化趨勢的分析。

  二、學情分析

  本單元的教學是在學生已有統計經驗的基礎上,學習新知的。六年級的學生已經學習了條形統計圖和折線統計圖,知道他們的特點,並具有一定的概括、分析能力,在此基礎上,透過新舊知識對比,自然生成新知識點。

  三、設計理念和教法分析

  1、本堂課力爭做到由“關注知識”轉向“關注學生”,由“傳授知識”轉向“引導探索”,“教師是組織者、領導者。”將課堂設定問題給學生,讓學生自己獲取資訊、分析資訊,自主探索、合作交流,參與知識的構建。

  2、運用探究法。探究學習的內容以問題的形式出現在教師的引導下,學生自主探究,讓學生在課堂上多活動、多思考,自主構建知識體系。引導學生獲取資訊併合作交流。

  四、說學法

  《數學課程標準》指出有效的數學學習不能單純的依賴模仿和記憶,動手操作、自主探索與合作交流是學生學習數學的重要方式。教學時,我透過學生感興趣的話題引入,引導學生關注身邊的數學,使學生體會到觀察、概括、想象、遷移等數學學習方法,在師生互動中讓每個學生都動口,動手,動腦。培養學生學習的主動性和積極性。

  五、說教學程式

  本課分成創設情境,感知特點——分析資料,理解特徵——嘗試製圖,看圖分析——實踐應用,全課總結四環節。

  六、說教學過程

  (一)複習引新

  1、複習舊知

  提問:我們學習過哪些統計方法?其中條形統計圖和折線統計圖各有什麼特點?

  2、引入新課

  (二)自主探索,學習新知

  新知識教學分二步教學:第一步整體感知,看懂統計圖,理解特徵,這是本節課的重點。在教學中,以知識遷移的方式建立新舊知識之間的聯絡,放手讓學生獨立思考,互相合作,進一步瞭解統計圖的特徵。

  第二步實踐應用環節。在教學中,精心地選取了大量的生活素材,使統計知識與生活建立緊密的聯絡。根據統計圖回答問題,是讓學生運用到剛才學習到的知識來解決生活中的一些問題,並鞏固剛才所學的知識,為學生自己發現問題、提出問題及自己解決問題提供了較大的空間。同時,讓學生感悟由於資料變化帶來的啟示,並能合理地進行推理與判斷

  三、課堂總結

  四、佈置作業。

  五、板書設計:

  新版高中數學一等獎說課稿5

  一、教材分析(說教材):

  1. 教材所處的地位和作用:

  本節內容在全書和章節中的作用是:是中數學教材第 冊第 章第 節內容。在此之前學生已學習了基礎,這為過渡到本節的學習起著鋪墊作用。本節內容是在中佔據的地位。以及為其他學科和今後的學習打下基礎。

  2. 教育教學目標:

  根據上述教材分析,考慮到學生已有的認知結構心理特徵,制定如下教學目標:

  (1)知識目標:

  (2)能力目標:透過教學初步培養學生分析問題,解決實際問題,讀圖分析,收集處理資訊,團結協作,語言表達能力以及透過師生雙邊活動,初步培養學生運用知識的能力,培養學生加強理論聯絡實際的能力,(3)情感目標:透過 的教學引導學生從現實的生活經歷與體驗出發,激發學生學習興趣。

  3. 重點,難點以及確定依據:

  下面,為了講清重難上點,使學生能達到本節課設定的目標,再從教法和學法上談談:

  二、教學策略(說教法)

  1. 教學手段:

  如何突出重點,突破難點,從而實現教學目標。在教學過程中擬計劃進行如下操作:教學方法。基於本節課的特點: 應著重採用 的教學方法。

  2. 教學方法及其理論依據:堅持“以學生為主體,以教師為主導”的原則,根據學生的心理發展規律,採用學生參與程度高的學導式討論教學法。在學生看書,討論的基礎上,在老師啟發引導下,運用問題解決式教法,師生交談法,影象訊號法,問答式,課堂討論法。在採用問答法時,特別注重不同難度的問題,提問不同層次的學生,面向全體,使基礎差的學生也能有表現機會,培養其自信心,激發其學習熱情。有效的開發各層次學生的潛在智慧,力求使學生能在原有的基礎上得到發展。同時透過課堂練習和課後作業,啟發學生從書本知識回到社會實踐。提供給學生與其生活和周圍世界密切相關的數學知識,學習基礎性的知識和技能,在教學中積極培養學生學習興趣和動機,明確的學習目的,老師應在課堂上充分調動學生的學習積極性,激發來自學生主體的最有力的動力。

  3. 學情分析:(說學法)

  (1)學生特點分析:中學生心理學研究指出,高中階段是(查同中學生心發展情況)抓住學生特點,積極採用形象生動,形式多樣的教學方法和學生廣泛的積極主動參與的學習方式,定能激發學生興趣,有效地培養學生能力,促進學生個性發展。生理上表少年好動,注意力易分散

  (2) 知識障礙上:知識掌握上,學生原有的知識 ,許多學生出現知識遺忘,所以應全面系統的去講述;學生學習本節課的知識障礙, 知識,學生不易理解,所以教學中老師應予以簡單明白,深入淺出的分析。

  (3)動機和興趣上:明確的學習目的,老師應在課堂上充分調動學生的學習積極性,激發來自學生主體的最有力的動力,最後我來具體談談這一堂課的教學過程:

  4. 教學程式及設想:

  (1)由 引入:把教學內容轉化為具有潛在意義的問題,讓學生產生強烈的問題意識,使學生的整個學習過程成為“猜想”繼而緊張的沉思,期待錄找理由和證明過程。在實際情況下學習可以使學生利用已有的知識與經驗,同化和索引出當肖學習的新知識,這樣獲取知識,不但易於保持,而且易於遷移到陌生的問題情境中。

  (2)由例項得出本課新的知識點

  (3)講解例題。在講例題時,不僅在於怎樣解,更在於為什麼這樣解,而及時對解題方法和規律進行概括,有利於學生的思維能力。

  (4)能力訓練。課後練習使學生能鞏固羨慕自覺運用所學知識與解題思想方法。

  (5)總結結論,強化認識。知識性的內容小結,可把課堂教學傳授的知識儘快化為學生的素質,數學思想方法的小結,可使學生更深刻地理解數學思想方法在解題中的地位和應用,並且逐步培養學生良好的個性品質目標。

  (6)變式延伸,進行重構,重視課本例題,適當對題目進行引申,使例題的作用更加突出,有利於學生對知識的串聯,累積,加工,從而達到舉一反三的效果。

  (7)板書

  (8)佈置作業。

  針對學生素質的差異進行分層訓練,既使學生掌握基礎知識,又使學有餘力的學生有所提高,

  教學程式:

  (一)課堂結構:複習提問,匯入講授課,課堂練習,鞏固新課,佈置作業等五部分

  高中數學集合教學反思

  集合這章內容,教學參考書上安排的課時為五課時,我們的導學案也是安排五課時,實際教學時,由於對學生的實際情況估計不足,第一課時的導學案用了兩課時才完成。集合這一章的特點是概念不多,但這章所涉及到的內容很廣,學生學習本章內容時,不僅要理解本章的概念,還要理解與本章內容相關聯的其他內容,這些內容有初中學習過的內容、有生活中的方方面面的相關知識,再加上高中學習方法與初中不同,邏輯思維能力要求較高,因此學生感覺學起來比較困難。針對這種情況,我在實際教學時,首先要求學生準確理解概念,如:集合的元素具有三個性質:確定性、互異性、無序性。集合的關係、運算等都是從元素的角度定義的,所以解集合問題時,教會學生對元素的性質進行分析,反覆訓練,讓學生透過例項體會這三個性質。

  第二,掌握相關的符號語言、venn圖,正確使用列舉法、描述法表示集合,特別要注意用描述法表示集合時,集合中的元素是什麼,這是一個教學難點。第二個難點是集合的運算—交集和並集。突破難點充分運用數形結合思想,集合間的關係和運算,以數形結合思想為指導,藉助圖形思考,可以使各集合間的關係直觀明瞭,使抽象的集合運算建立在直觀的基礎上,使解題思路清晰明朗,直觀簡捷,有利於問題的解決。

  第三,指導學生理解並掌握自然語言、符號語言、圖形語言這三種語言,靈活準確地進行語言轉換,可以幫助學生提高分析問題,解決問題的能力。

  第四,集合問題涉及到的其他內容,遇到了講透,不拓展。