查文庫>說課稿> 《三角形的內角和》說課稿(通用12篇)

《三角形的內角和》說課稿

《三角形的內角和》說課稿(通用12篇)

  在教學工作者開展教學活動前,時常需要編寫說課稿,說課稿可以幫助我們提高教學效果。說課稿要怎麼寫呢?下面是小編為大家整理的《三角形的內角和》說課稿,希望對大家有所幫助。

  《三角形的內角和》說課稿 篇1

各位老師:

  你們好!

  我是來應聘xx數學老師的x號考生,我今天抽到的試講題目是《三角形的內角和》,下面開始我的試講。

  同學們,上節課我們已經學習了三角形的基本形狀,那麼同學們一起告訴老師我們都學了什麼形狀的三角形啊?對,非常好,有鈍角三角形、直角三角形和銳角三角形。大家回答的很好,說明上節課掌握的很好,那今天老師想讓大家畫個特殊點的三角形,好不好?今天我請同學們在紙上畫一個有兩個直角的三角形,畫好了請舉手哦。有沒有畫好呀?沒有,大家看黑板上老師畫的,是不是和你們畫出來的一樣?為什麼我們沒辦法畫出有兩個直角的三角形呢?肯定裡面有秘密,大家跟著老師一起來研究一下好不好?

  大家拿出事先準備好的三角板和量角器吧,同學們,你們現在用量角器來測量一下每一個三角形的角的度數,待會老師會進行統計。(轉身畫兩個三角板模型),測好了吧,下面請靠窗的同學告訴老師你的測量答案。30度60度90度,非常好,那另一個呢?45度45度和90度,非常精確,請坐,相信咱們其他同學也一定能夠測量出來。那麼大家仔細觀察一下,這兩組資料有沒有什麼相似點。有的同學說都有個九十度,很好,還有呢,很好!有的同學發現了,說這三個角加起來是180度,非常棒。也就是這兩個三角形內角和是180度。

  可是是不是所有內角和都是180度啊,同學們,你們自己分別畫一個不同的銳角、鈍角、直角三角形,並且測量每個內角度數,並報給老師內角和。好,請第一排的女生起來回答,你的三個內角和是多少?179,180,180很好,大家知道為什麼第一個不是嗎?對,是因為畢竟有誤差的存在,很棒。

  下面大家按以前的安排分成六個組,交給你們一個任務,你們討論一下,怎麼來驗證我們剛剛得出的這個結論呢?給大家十分鐘時間來討論。

  好,討論結束,來,哪個組派個代表來回答一下?請,哦,你說用量角器測量,恩不錯,可是用量角器的話,有可能存在誤差對不對?那還有沒有更好的方法呢?

  老師看到很多同學都皺起了眉頭,那老師來給大家一點小提示, 我們試著把三角形的三個角剪下來拼拼看。啊,很棒我看到前排的同學把三個角拼成了一個平角,大家知道平角多少度?180。那下面,大家可以動動手,任意再畫幾個三角形,用剛剛的方法看看能不能拼成一個平角?好,大家都非常積極,透過剛剛的驗證,我們可以肯定:三角形的內角和是180度。

  那接下來我們回到咱們剛開始上課的問題:為什麼不能畫一個有兩個直角的三角形?誰願意給大家說說?好,你舉手最快,請你來說說。嗯,很好,因為有兩個九十度的角加起來就是180度了, 不可能畫出一個三角形,太棒了。請坐。

  大家看大螢幕,這裡有兩個三角形,老師給分別給大家標出了其中兩個角的度數,有沒有同學告訴我剩下的度數啊?趕緊開動腦筋算算看。好,算好的同學大聲告訴老師,第一個是30度,很棒。第二個50度,很棒,算的非常準確,看來大家上課都非常認真。

  這堂課我們就上到這裡,請大家回去完成課後習題1到3。好,下課!

  《三角形的內角和》說課稿 篇2

  一、教學目標

  課程標準這樣描述:透過觀察、操作了解三角形內角和是180。

  分析教材內容,在上學期的學習中學生已經掌握了角的分類及度量的知識。在本課之前,學生又研究了三角形的特性、三邊間的關係及三角形的分類等知識。積累了一些有關三角形的知識和經驗,形成了一定的空間觀念,可以在比較抽象的水平上進一步認識三角形,探索新知。教材中安排了學生對不同形狀的、大小的三角形進行度量,再運用拼、折、剪等方法發現三角形的內角和是180°,學好它有助於學生理解三角形的三個內角之間的關係,也是進一步學習其他圖形內角和的基礎,同時為初中進一步論證做好準備。

  課前我對學情進行了分析:

  1、學生在學習本課前已經掌握了銳角、直角、鈍角、平角和周角的度數,認識了三角形的基本特徵及其分類,由於學生的數學知識、能力和思考問題的角度有一定的差異,因此比較容易出現解決問題策略的多樣化。

  2、已經有不少學生知道了三角形內角和是180度的結論,但是很可能都知其然不知其所以然。

  透過對課程標準的認識,以及內容分析和學情分析,我制定了這樣的學習目標:

  1、透過量、拼、折、剪等方法探索和發現三角形的內角和等於180°並會應用這一規律解決實際的問題。

  2、透過研究直角三角形進而研究銳角三角形、鈍角三角形,初步認識、理解由特殊到一般的邏輯思辨方法。

  二、評價設計

  針對這一目標的完成,我設計了一下評價方式:

  1、交流式評價:透過師生、生生對話交流,在交流中對學生進行評價。

  2、表現性評價:透過小組討論表現、學生回答問題情況,適當對學生進行點撥。

  3、操作反應評價:透過學生在研究三角形內角和過程中的測量、簡拼、折等活動對學生進行評價

  評價題目

  1、透過3個練習題(1.做一做。2.說一說3.拼一拼、想一想)

  檢測學習目標1的掌握情況。

  2、透過小組、同桌合作、彙報,教師引導學生理解本節課所蘊含的學習方法,檢測學習目標2的掌握情況

  三、教具學具準備

  教具準備:課件、3個直角三角形,2個銳角三角形、2個鈍角三角形、一張表格

  學具準備:三角板、量角器.

  四、教學過程

  這節課的教學我透過一下四個環節完成。

  1、觀察猜測,引入新知;

  2、動手操作,探索新知;

  3、鞏固新知,拓展應用;

  4、總結評價、延伸知識。

  第一環節,觀察猜測,引入新知。

  由圖形引入,讓學生指出銳角三角形,直角三角形,鈍角三角形的三個內角,發現在這些三角形中最大的內角是鈍角。問:想看鈍角三角形72變嗎?我們一起來看一看。課件演示:

  (1)鈍角變小,另外兩個角怎樣變?

  (2)鈍角變大,另外兩個角怎樣變?

  (3)鈍角變大、變大、變大再變大,還能再大嗎?發現再大就成平角了。平角多少度?這時把三角形三個內角的加起來,和可能多少呢?猜測:180度。

  這只是我們的猜測,(板書:猜測)數學是要用事實說話的,這節課我們就來學習三角形的內角和。(板書課題)這樣由三種變化的三角形引入新課,激發學生興趣的同時為後面的學習做準備

  第二環節,動手操作,探索新知。

  1、直角三角形的內角和。

  (一)直角三角形內角和

  先讓學生觀察一副三角板的內角和,發現都是180度,和猜測是一樣的,是不是所有的直角三角形內角和都是180度呢?課件出示一些直角三角形,讓學生用手中的工具驗證你的猜測。

  四人小組合作,拿出學具袋裡三個紅色的直角三角形和表格,用不同的方法驗證猜測。學生可以“量一量”,也可以“剪一剪”,還可以“折一折”。彙報時要讓學生說一說方法,同時在課件上展示。

  這個環節引導學生透過量、拼、推理等實踐操作活動,自主探究直角三角形的內角和是180度,體驗解決問題策略的多樣化。透過這些過程使學生明白:探究問題有不同的方法、途徑,並且方法之間可以互為驗證,達到結論的統一,從而使學生明白獲得探究問題的方法比獲得結論更為重要。

  (二)、銳角三角形、鈍角三角形的內角和

  課件出示將銳角三角形、鈍角三角形,問:你能利用我們剛才學到的知識來研究它們的內角和嗎?動手試一試,可以同桌討論。(學生操作,彙報,課件演示)讓學生模仿老師操作說理。由此得到了銳角三角形和鈍角三角形的內角和也是180度。我們就可以說所有三角形的內角和都是180度。這是三角形的一個特性。

  這樣引導學生透過直角三角形的內角和是180度來推匯出銳角和鈍角三角形的內角和是180度,使學生初步掌握由特殊到一般的邏輯思辨方法。

  第三環節、鞏固新知,拓展應用

  用三角形的這一特性來解決一些問題

  1、基本練習

  透過做一做和說一說這兩個練習來強化學生認知。

  2、拓展練習

  拼一拼、想一想

  (1)兩個三角形拼成大三角形,說出大三角形的內角和

  (2)一個三角形去掉一部分

  引導學生髮現,無論三角形的形狀或大小如何改變,內角和都是180度,看來三角形的內角和度數和他的大小形狀都無關。

  (3)再把這個三角形剪去一部分剪成一個四邊形,它的內角和是多少度?

  (4)如果變成五邊形,你還能求出他的度數嗎?

  充分利用多媒體資源幫助學生理解、消化、新的知識,能夠靈活的運用三角形的內角和等於180度。在此基礎上滲透數學的“轉化”思想和“分割”思想提高學生靈活運用和推理等各方面的能力。

  第四環節、總結評價、延伸知識

  透過這個環節讓學生談一談自己的收穫或感受,對本節課的知識進行拓展昇華。

  五、板書設計:

  三角形的內角和

  猜測(180度)

  驗證:測量、撕拼、摺疊結論

  三角形的內角和是180度

  我的板書簡明扼要,體現了本節課的重點,而且是對本節課學習方法的一個回顧。

  《三角形的內角和》說課稿 篇3

各位評委:

  你們好!

  我說課的主題是“角色扮演,引導學生猜想驗證”,說課的內容是《三角形的內角和》。

  一、說說我對教材與學情的分析

  《三角形的內角和》是北師大版四年級下冊第二單元的教學內容,是在學生學習了三角形的概念及特徵、分類之後進行的,它是三角形的一個重要特徵,也是掌握多邊形內角和及解決其他實際問題的基礎。教材的小標題為“探索與發現”,強調說明這一部分的內容要求學生透過自主探索來發現有關三角形的性質。學生已經掌握三角形特性和分類,熟悉了鈍角、銳角、平角這些角的知識,大多數學生已經在課前透過不同的途徑知道“三角形的內角和是180度”的結論,但不一定清楚道理,所以本課的設計意圖不在於瞭解,而在於驗證,讓學生在課堂上經歷研究問題的過程是本節課的重點。

  二、聊聊我對教學目標及重難點的確定

  以建構主義理論以及有效教學的理念為指導,結合對教材和學情的分析,我將本節課的教學目標定為下列幾點:

  1、透過量、剪、拼等活動發現、驗證三角形的內角和是180°,並會應用這一知識解決生活中簡單的實際問題。

  2、經歷親自動手實踐、探索三角形內角和的過程,體會運用“量一量”、“算一算”、“拼一拼”、“折一折”進行驗證的數學思想方法。

  3、在探究中體驗成功的喜悅,激發主動學習數學的興趣。

  教學重點:經歷“三角形的內角和是180°”的形成、發展和應用的全過程。

  教學難點:驗證“三角形的內角和是180°”以及對這一規律的靈活運用。

  學具準備:量角器、三角尺、剪刀和準備一個喜歡的三角形。

  三、談談我的主要教學流程

  本節課我設計採用支架式教學方法,以猜想→驗證→應用→評價四個活動環節為主線,引導學生透過自主探究學習實現對“三角形內角和是180°”這一知識規律的數學理解。同時,每一個活動環節都讓學生嘗試扮演一種角色,激發他們投入課堂活動的興趣。

  1.大膽設疑,提出猜想(猜想家)

  在這節課之前,有不少學生透過各種渠道瞭解了三角形的內角和是180°。因此,第一個環節我就讓學生根據已有的知識經驗進行大膽設疑,提出猜想,做一個猜想家。

  首先,我向學生出示一個長方形,向學生講解長方形的四個內角,引導學生將這四個內角的度數相加算出長方形的內角和是360°。

  接著,我把長方形拆成兩個三角形,讓學生指出其中一個三角形的三個內角,設問:這個三角形的三個內角和是多少?讓學生說說各自的看法和理由,並引導提出“是不是所有的三角形的內角和是180°”的猜想。透過這一環節,學生首先獲得對“三角形內角和是什麼”這一陳述性知識的數學理解。

  2.科學驗證,探索規律(科學家)

  有了大膽的猜想,就要進行科學的驗證,第二個角色就是扮演科學家,對剛才的猜想進行科學驗證,自主探索。

  第二個環節的活動步驟如下:

  (1)提供實驗活動需要操作的工具,如:量角器、三角尺、剪刀等,讓學生說說:“要知道三角形的內角和,怎樣利用好這些工具?”

  (2)明確提出操作要求:先在自己準備的三角形上作好內角的符號,選擇合適的工具開展實驗,遇到操作困難可以與同伴商量或請老師幫助解決。

  (3)學生操作後在小組內交流,出示交流提綱:

  A、透過實驗操作,你發現三角形的內角和有什麼特點?你是怎樣發現的?

  B、你認為三角形的內角和與三角形的大小、形狀有關嗎?為什麼?

  (4)集體交流,小結規律:

  在組織學生交流實驗的過程與成果時,我會挑選出研究不同形狀或不同大小的三角形的學生進行實驗彙報,並在學生提出疑問時進行合理的解釋與調控,尤其是要對一些透過量一量得出180度左右的結論進行“誤差解釋”。最後與學生一起小結歸納出:“三角形的內角和是180°,而且與它的大小、形狀無關”這一數學規律,從中感悟由特殊到一般的證明方法。

  3.聯絡生活,實踐應用(實踐家)

  有效教學理論指出練習要考慮它的實效性。在這個環節,我設計讓學生扮演實踐家,透過三個有層次有針對性的練習實踐把探索得出的知識應用於生活問題之中。

  第一,基本運用。即書本中“試一試”的第3題和“練一練”的第1、第2題。透過這個3練習讓學生形成運用三角形內角和的知識求出未知角度數的基本技能。

  第二,綜合運用。即書本中“做一做”的第3題,這道題在讓學生知道其中一個角等於60度的情況下,綜合運用三角形內角和是180度和三角形分類知識來進行解決。

  第三,拓展延伸。我設計了讓學生求四邊形和五邊形等多邊形的內角和的問題,讓學生透過量、拼、分等辦法嘗試求多邊形內角和,並找出其中的規律。

  4.自我反思,評價延伸

  在這個環節,我會讓學生自己說說:“這節課你有什麼收穫?”“在扮演三個角色時,哪一個角色完成得最好,為什麼?”

  為了突出本課的重點,我設計了簡潔明瞭的板書:

  三角形的內角和

  量角撕拼折角拼圖

  三角形的內角和是180度。

  《三角形的內角和》說課稿 篇4

各位評委、老師:

  大家好!

  我說課的題目是《三角形內角和》,內容選自人教版九年義務教育七年級下冊第七章第二節第一課時。

  一、本節課在新一輪課程改革下的設計理念:

  數學是人與人之間精神層面上進行的交往。課堂教學中的交往主要是教師與學生、學生與學生之間的交往。它需要運用“對話式”的學習方式,採取多種教學策略,使學生在合作、探索、交流中發展能力。新課程中對學生的情感、體驗、價值觀,以及獲取知識的渠道都有悖於傳統的教學模式,這正是教師在新課程中尋找新的教學方式的著眼點。應該說,新的教學方式將伴隨著教師對新課程的逐漸透視而形成新的路徑。

  要破除原有教學活動的框架,建立適應師生相互交流的教學活動體系;滿足學生的心理需求,實現教者與學者感情上的融洽和情感上的共鳴;給學生體驗成功的機會,把“要我學”變成“我要學”。我認為教師角色的轉變一定會促進學生的發展、促進教育的長足發展,在未來的教學過程裡,教師要做的是:幫助學生決定適當的學習目標,並確認和協調達到目標的最佳途徑;指導學生形成良好的學習習慣,掌握學習策略;創造豐富的教學情境,培養學生的學習興趣,充分調動學生的學習積極性;為學生提供各種便利,為學生的學習服務;建立一個接納的、支援性的、寬容的課堂氣氛;作為學習的參與者,與學生分享自己的感情和想法;和學生一道尋找真理,能夠承認自己的過失和錯誤。教學情境的營造是教師走進新課程中所面臨的挑戰,適應新一輪基礎教育課程改革的教學情境不是文字中的約定,也不是現成的拿來就能用的,需要我們在教學活動的全過程中去探索、研究、發現、形成。

  二、教材分析與處理:

  三角形的內角和定理揭示了組成三角形的三個角的數量關係,此外,它的證明中引入了輔助線,這些都為後繼學習奠定了基礎,三角形的內角和定理也是幾何問題代數化的體現。

  三、學生分析

  處於這個年齡階段的學生有能力自己動手,在自己的視野範圍內因地制宜地收集、編制、改造適合自身使用,貼近生活實際的數學建模問題,他們樂於嘗試、探索、思考、交流與合作,具有分析、歸納、總結的能力,他們渴望體驗成功感和自豪感。因而老師有必要給學生充分的自由和空間,同時注意問題的開放性與可擴充套件性。

  四、教學目標:

  1.知識目標:在情境教學中,透過探索與交流,逐步發現“三角形內角和定理”,使學生親身經歷知識的發生過程,並能進行簡單應用。能夠探索具體問題中的數量關係和變化規律,體會方程的思想。透過開放式命題,嘗試從不同角度尋求解決問題的方法。教學中,透過有效措施讓學生在對解決問題過程的反思中,獲得解決問題的經驗,進行富有個性的學習。

  2.能力目標:透過拼圖實踐、問題思考、合作探索、組內及組間交流,培養學生的的邏輯推理、大膽猜想、動手實踐等能力。

  3.德育目標:透過添置輔助線教學,滲透美的思想和方法教育。

  4.情感、態度、價值觀:在良好的師生關係下,建立輕鬆的學習氛圍,使學生樂於學數學,遇到困難不避讓,在數學活動中獲得成功的體驗,增強自信心,在合作學習中增強集體責任感。

  五、重難點的確立:

  1.重點:三角形的內角和定理探究與證明。

  2.難點:三角形的內角和定理的證明方法(新增輔助線)的討論

  六、教法、學法和教學手段:

  採用“問題情境-建立模型-解釋、應用與拓展”的模式展開教學。

  採用對話式、嘗試教學、問題教學、分層教學等多種教學方法,以達到教學目的。

  《三角形的內角和》說課稿 篇5

  一、說教材

  “三角形的內角和”是義務教育課程標準實驗教科書數學四年級下冊85頁內容。經過前幾節課的學習,學生已經學習了有關三角形的知識。

  教材在呈現教學內容時,不但重視體現知識形成的過程,而且注意留給學生充分進行自主探索和交流的空間,為教師靈活的組織教學提供了清晰的思路。主要體現在:概念的形成不直接給出結論,而是提供豐富的動手實踐的素材,設計思考性較強的問題,讓學生透過探索、實驗、發現、討論、交流獲得。從而讓學生在動手操作,積極探索的活動過程中掌握知識,積累數學活動經驗,發展空間觀念和推理能力,不斷提高自己的思維水平。基於對教材以上的認識及課程標準的要求,我擬定本節課的教學目標為:

  1、知識目標:知道三角形內角和是180°。

  2、能力目標:

  ①透過學生算、拼、折、觀察等活動,培養學生探索、發現能力、觀察能力和動手操作能力。

  ②能運用三角形內角和是180°這一規律解決實際問題。

  3、情感目標:

  ①讓學生在探索活動中產生對數學的好奇心,發展學生的空間觀念;

  ②體驗探索的樂趣和成功的快樂,增強學好數學的信心。

  教學重點:三角形內角和是180°的實際應用。

  教學難點:探索三角形的內角和是180°。

  二、說教法

  在教學中,我主要採用激趣法、實驗法、直觀演示法、啟發式教學,以觀察法和練習法為輔助教學,(以學生為主體,教師為主導。

  新課程標準的基本理念就是要讓學生“人人學有價值的數學”。)強調“教學要從學生已有的經驗出發,讓學生親身經歷將實際問題抽象成數學模型並進行解釋與應用的過程。要激發學生的學習積極性,向學生提供充分從事數學活動的機會,讓他們積極主動地探索,解決數學問題,發現數學規律,獲得數學經驗;而教師只是學生學習的組織者、引導者和合作者,在全面參與和了解學生的學習過程中起著對學生進行積極的評價,關注他們的學習方法、學習水平和情感態度,促使學生向著預定的目標發展的作用”。因此,我運用“量一量——算一算——拼—拼——折一折——看一看……”的教學法,讓學生知道身邊的數學問題隨處可見,能用自己所學的知識解決生活當中的事情,培養學生的發散思維,進一步激發學生學習數學的熱情。

  三、說學法

  在學習中,以學生自己學習為主,充分開發學生的思維,透過實驗觀察,培養學生動手、動腦、分析、比較、綜合的能力。在整節課的探索活動中,我設計有獨立活動、分小組活動。在具體活動中,我讓學生自主探索三角形的內角和是多少度?再透過測量、拼折、驗證等方式讓學生確定三角形內角的度數和。這樣,既培養了學生的觀察能力和歸納概括能力,又體現了學生動手實踐、合作交流,自主探索的學習方式,同時也培養了學生探索能力和創新精神。

  四、說教學程式

  1、談話激趣設疑匯入:教學的藝術不在於傳授知識,而在於喚醒、激發和鼓勵。剛開始上課,我設計了兩個三角形哪一個三角形的內角和大,用什麼方法知道誰大誰小呢{設疑},這樣的問題。能最大限度的激發學生探究數學的願望和興趣,為學生進一步學習打好基礎。學生有了探索的願望和興趣,可是不能沒有目標的去探索。

  2、驗證{自主探索}:把課堂大量的時間和空間留給學生,讓他們開展有針對性的數學探究活動{既驗證三角形的內角和是否是180度?},在活動中,把放開和引導有機的結合,鼓勵學生積極開動腦筋,從不同的途徑探索解決問題的方法。不但讓每個學生自主參與驗證活動,而且使學生在經歷觀察、操作、分析、推理和想象活動過程中解決問題,發展空間觀念和論證推理能力。具體過程為:量一量——拼一拼——折一折。

  3、鞏固內化:俗話說的好:“熟能生巧”。數學離不開練習,要掌握知識,形成技能技巧,一定要透過練習。養成良好的思維品質也要透過一定的思考練習,課程標準提倡練習的有效性。對此,我非常注意將數學的思考融入不同層次的練習之中,很好的發揮練習的作用,練習題的設計有易到難,使學生在圖形變化的過程中掌握知識,培養思維的靈活性,從中發展學生的空間觀念和空間想象能力。這些練習設計目的明確,針對性強,使學生不但鞏固了知識,更重要的是數學思維得到不斷的發展。

  4、拓展創新:數學具有嚴密的邏輯性和抽象性。而學生學習內容的呈現是從簡單到複雜,思維方式是從具體到抽象的一個循序漸進的過程,前面學習的知識往往是後面進一步學習的基礎。要培養學生思維的靈活性,可以先讓學生學會對知識的遷移。本課最後,我設計了這樣一道題目:學了三角形的內角和後,你知道五邊形、六邊形的內角和是多少度嗎?請小組合作選擇一個圖形求內角和。這道題透過對本節課所學知識的遷移就可以完成,既能對學生進行思維訓練,又能培養學生應用知識的能力,更能培養學生的創新意識和創新精神。

  總之,本節課教學活動中我力求充分體現以下特點:以學生髮展為本,以學生為主體,思維為主線的思想;充分關注學生的自主探究與合作交流;練習體現了層次性,知識技能得於落實和發展。教師是學生學習的組織者、引導者、合作者,而非知識的灌輸者,因而對一個問題的解決不是要教師將現成的方法傳授給學生,而是教給學生解決問題的策略,給學生一把在知識的海洋中行舟的槳,讓學生在積極思考,大膽嘗試,主動探索中,獲取成功並體驗成功的喜悅。

  《三角形的內角和》說課稿 篇6

尊敬的各位評委老師:

  好!(鞠躬)

  我是小學數學組幾號考生,今天我說課的題目是《三角形的內角和》,下面開始我的說課。

  依據數學課程標準,在新課程理念的指導下,我將以教什麼,怎樣教以及為什麼這樣教的思路,從教材分析,教學目標,教學方法教學內容等方面展開我的說課。

  說教材

  《三角形的內角和》是人教版小學數學四年級下冊第五單元的內容。“三角形的內角和”是三角形的一個重要性質,學好它有助於學生理解三角形內角之間的關係,也是進一步學習幾何的基礎。本節課是在學生學過角的度量、三角形的特徵和分類等知識的基礎上進行教學的,學生已經具備一定的關於三角形的認識的直接經驗,也已具備了一些相應的三角形知識和技能,這為感受、理解、抽象“三角形的內角和”的規律,打下了堅實的基礎。

  說學情

  一節成功的課,不僅在於對教材的把握,還有對學生的研究。四年級的學生正處於具體形象思維為主導的階段,他們解決問題的能力很強,但自控力稍差。因此本節課將注重引導學生動腦思考,動手實踐,打破以知識傳授為主的傳統數學課堂模式,採用靈活多樣的教學方法,牢牢將學生的注意力集中在課堂中。

  說教學目標

  根據新課程的要求及教材的編寫特點,充分考慮到四年級學生的思維水平,我確立如下三維教學目標:

  知識與技能目標:透過量、剪、拼等活動發現、證實三角形內角和是180°,並會應用這一知識解決生活中簡單的實際問題。

  過程與方法目標:經歷觀察、猜想、驗證的過程,提升自身動手操作及推理、歸納總結的能力。

  情感態度價值觀目標:在參與學習的過程中,感受數學的魅力,體驗成功的喜悅,激發學習數學的興趣。

  說教學重難點

  根據教學目標,我確定了本節課的重點和難點。重點為三角形內角和定理,而三角形內角和定理推理的過程為本節課的難點。

  說教法

  為了更好地突出重點,突破難點,堅持“以學生為主體,以教師為主導”的原則,根據學生的心理發展規律,我將採用啟發式教學法,引導學生利用已有的知識經驗去探索新知,並在探索過程中掌握本節重難點,同時輔之以多媒體教學裝置,直觀地呈現教學內容。

  我將引導學生採用自主探究,合作交流的方式進行學習,透過動手動腦動口來掌握本節課的教學重難點。

  說教學內容

  為了更好地完成本節課的教學內容,突出重點突破難點,我設計了以下幾個教學環節:

  (一)創設情境,匯入新課

  為了引入新課,調動學生的學習興趣,一開始上課我便用多媒體播放有關三角形內角和情境影片:在圖形的王國中,有一天,三角形家族裡為“三角形內角和的大小”爆發了一場激烈的爭吵。鈍角三角形說“我的鈍角大,我的內角和一定比你們的內角和大”。銳角三角形也不示弱“你雖然有一個鈍角,可是其它兩個角都很小,而我的三個角都不是很小,所以我的內角和比你大”。直角三角形說“別爭了,我們的內角和是一樣大的,因為三角形的內角和是180°”。根據影片中三角形的對話,順勢引出題目——三角形的內角和。

  多媒體課件展示有關三角形內角和的內容,激發學生深厚的學習興趣和求知慾望,快速的進入學習高潮。

  (二)自主探究,感受新知

  首先讓學生畫幾個不同型別的三角形。然後同桌互相量一量,算一算,三角形3個內角的和各是多少度?透過測量,學生可以發現三角形的內角和是180°。

  接著我會提出一個問題是不是所有的三角形的內角和都是180°,如何進行驗證你的結論呢?接下來我會讓學生分小組討論,針對學生出現的問題,我給予指導,討論過後,請同學彙報,鼓勵學生用自己的語言表達,無論學生回答的全面與否,都給予積極的評價,其他同學認真傾聽後做出判斷,進行補充,提高學生的注意力。

  透過小組之間的討論,引導學生採用剪拼的方法進行驗證,先把一個三角形的三個角剪下來,再拼一拼,拼成一個平角。

  最後引導學生總結出三角形的內角和是180°。

  以上教學活動採用讓學生主動探索、小組合作交流的學習方式,使學生充分經歷數學學習的全過程,體現以生為本的教學理念。學生在全程參與中不僅掌握新知發展能力培養的推理能力,又鍛鍊學生的語言表達能力和溝通能力,同時讓學生體驗數學與生活的緊密聯絡。

  (三)鞏固練習,強化知識

  我利用小學生好勝心強的特點,以闖關的形式將課本的習題展現在多媒體上來鞏固本節課所學的知識,這樣設計能增加數學的趣味性,激發學生的學習興趣,並檢視他們知識的掌握情況。

  (四)課堂小結

  我將此環節分為兩部分。第一部分是以學生為主體的知識性總結,讓學生暢談本節課的感受和收穫,及時瞭解學生的學習情況和情感體驗。第二部分是以教師為主體的情感性總結,我會對學生的表現予以表揚和激勵,激發學生的學習興趣,增強學習自信心。

  (五)佈置作業

  針對學生的年齡特點,我會讓學生在課下和家長交流今天的收穫和感受,從而讓家長了解學生在校的學習情況,並促進學生與家長的溝通。

  說板書設計

  一個好的板書應該是簡潔明瞭整潔美觀,重難點突出,能夠對學生理解本節知識有一定的強化作用,因此我的板書是這樣設計的。

  以上就是我的全部說課,感謝各位老師的聆聽!(鞠躬)

  《三角形的內角和》說課稿 篇7

  一、說教材

  (一)教材的地位和作用

  《三角形內角和》一課是人教版義務教育課程標準實驗教材四年級下冊第五單元的內容,是在學生學習了《三角形的特性》以及《三角形三邊關係》、《三角形的分類》之後進行的,在此之後則是《圖形的拼組》,它是三角形的一個重要特徵,也是掌握多邊形內角和及解決其他實際問題的基礎,因此,學習、掌握三角形的內角和是180°這一規律具有重要意義。

  (二)教學目標

  基於以上對教材的分析以及對教學現狀的思考,我從知識與技能、教學過程與方法、情感態度價值觀三方面擬定了本節課的教學目標:

  1.透過“量一量”、“算一算”、“拼一拼”、“折一折”的小組活動的方法,探索發現驗證三角形內角和等於180°,並能應用這一知識解決一些簡單問題。

  2.透過把三角形的內角和轉化為平角進行探究實驗,滲透“轉化”的數學思想。

  3.透過數學活動使學生獲得成功的體驗,增強自信心。培養學生的創新意識、探索精神和實踐能力。

  (三)教學重、難點

  因為學生已經掌握了三角形的概念、分類,熟悉了鈍角、銳角、平角這些角的知識。對於三角形的內角和是多少度,學生並不陌生,也有提前預習的習慣,學生幾乎都能回答出三角形的內角和是180°。在整個過程中學生要了解的是“內角”的概念,如何驗證得出三角形的內角和是180°。因此本節課我提出的教學的重點是:驗證三角形的內角和是180°。

  二、說教法、學法

  本節課主要是透過教師的精心引導和點撥,學生在小組中合作探索,透過量一量、折一折、撕一撕、畫一畫,選擇不同的一種或者幾種方法來驗證三角形的內角和是180°。

  因為《課程標準》明確指出:“要結合有關內容的教學,引導學生進行觀察、操作、猜想,培養學生初步的思維能力”。四年級學生經過第一學段以及本單元的學習,已經掌握了三角形的分類,比較熟悉平角等有關知識;具備了初步的動手操作、主動探究的能力,他們正處於由形象思維向抽象思維過渡的階段。因此,本節課,我將重點引導學生從“猜測――驗證”展開學習活動,讓學生感受這種重要的數學思維方式。

  三、說教學過程

  我以引入、猜測、證實、深化和應用五個活動環節為主線,讓學生透過自主探究學習進行數學的思考過程,積累數學活動經驗。

  (一)引入

  呈現情境:出示多個已學的平面圖形,讓學生認識什麼是“內角”。(把圖形中相鄰兩邊的夾角稱為內角)長方形有幾個內角?(四個)它的內角有什麼特點?(都是直角)這四個內角的和是多少?(360°)三角形有幾個內角呢?從而引入課題。

  【設計意圖】讓學生整體感知三角形內角和的知識,這樣的教學,將三角形內角和置於平面圖形內角和的大背景中,拓展了三角形內角和的數學知識背景,滲透數學知識之間的聯絡,有效地避免了新知識的“橫空出現”。

  (二)猜測

  提出問題:長方形內角和是360°,那麼三角形內角和是多少呢?

  【設計意圖】引導學生提出合理猜測:三角形的內角和是180°。

  三)驗證

  (1)量:請學生每人畫一個自己喜歡的三角形,接著用量角器量一量,然後把這三個內角的度數加起來算一算,看看得出的三角形的內角和是多少度?

  (2)撕―拼:利用平角是180°這一特點,啟發學生能否也把三角形的三個內角撕下來拼在一起,成為一個平角?請學生同桌合作,從學具中選出一個三角形,撕下來拼一拼。

  (3)折-拼:把三角形的三個內角都向內折,把這三個內角拼組成一個平角,一個平角是180°,所以得出三角形的內角和是180°。

  (4)畫:根據長方形的內角和來驗證三角形內角和是180°。

  一個長方形有4個直角,每個直角90°,那麼長方形的內角和就是360°,每個長方形都可以平均分成兩個直角三角形,每個直角三角形的內角和就是180°。從長方形的內角和聯想到直角三角形的內角和是180°。

  【設計意圖】利用已經學過的知識構建新的數學知識,這不僅有助於學生理解新的知識,而且是一種非常重要的學習方法。在探索三角形內角和規律的教學中,注意引導學生將三角形內角和與平角、長方形四個內角的和等知識聯絡起來,並使學生在新舊知識的連線點和新知識的生長點上把握好他們之間的內在聯絡。在整個探索過程中,學生積極思考並大膽發言,他們的創造性思維得到了充分發揮。

  (四)深化

  質疑:大小不同的三角形,它們的內角和會是一樣嗎?

  觀察:(指著黑板上兩個大小不同但三個角對應相等的三角形並說明原因,三角形變大了,但角的大小沒有變。)

  結論:角的兩條邊長了,但角的大小不變。因為角的大小與邊的長短無關。

  實驗:教師先在黑板上固定小棒,然後用活動角與小棒組成一個三角形,教師手拿活動角的頂點處,往下壓,形成一個新的三角形,活動角在變大,而另外兩個角在變小。這樣多次變化,活動角越來越大,而另外兩個角越來越小。最後,當活動角的兩條邊與小棒重合時,

  結論:活動角就是一個平角180°,另外兩個角都是0°。

  【設計意圖】小學生由於年齡小,容易受圖形或物體的外在形式的影響。教師主要是引導學生與角的有關知識聯絡起來,透過讓學生觀察利用“角的大小與邊的長短無關”的舊知識來理解說明。

  對於利用精巧的小教具的演示,讓學生透過觀察、交流、想象,充分感受三角形三個角之間的聯絡和變化,感悟三角形內角和不變的原因。

  (五)應用

  1.基礎練習:書本練習十四的習題9,求出三角形各個角的度數。

  2.變式練習:一個三角形可能有兩個直角嗎?一個三角形可能有兩個鈍角嗎?你能用今天所學的知識說明嗎?

  3.(1)將兩個完全一樣的直角三角形拼成一個大三角形,這個大三角形的內角和是多少?

  (2)將一個大三角形分成兩個小三角形,這兩個小三角形的內角和分別是多少?

  4.智力大挑戰:你能求出下面圖形的內角和嗎?書本練習十四的習題

  【設計意圖】習題是溝通知識聯絡的有效手段。在本節課的四個層次的練習中,能充分注意溝通知識之間的內在聯絡,使學生從整體上把握知識的來龍去脈和縱橫聯絡,逐步形成對知識的整體認知,構建自己的認知結構,從而發展思維,提高綜合運用知識解決問題的能力。

  第一題將三角形內角和知識與三角形特徵結合起來,引導學生綜合運用內角和知識和直角三角形、等邊三角形等圖形特徵求三角形內角的度數。

  第二題將三角形內角和知識與三角形的分類知識結合起來,引導學生運用三角形內角和的知識去解釋直角三角形、鈍角三角形中角的特徵,較好地溝通了知識之間的聯絡。

  第三題透過兩個三角形的分與合的過程,使學生感受此過程中三角內角的變化情況,進一步理解三角形內角和的知識。

  第四題是對三角形內角和知識的進一步拓展,引導學生進一步研究多邊形的內角和。教學中,學生能把這些多邊形分成幾個三角形,將多邊形內角和與三角形內角和聯絡起來,並逐步發現多邊形內角和的規律,以此促進學生對多邊形內角和知識的整體構建。

  四、說課板書設計:

  三角形內角和

  引入:

  猜測:

  量——算

  撕——拼

  驗證折——拼

  畫

  深化

  應用

  《三角形的內角和》說課稿 篇8

  一、說教材

  1、說課內容

  今天我說課的內容是人教版九年義務教育小學數學四年級下冊第五單元第67頁的《三角形的內角和》。

  2、教材分析

  《三角形的內角和》是探索型的教材。是在學生學習了三角形、長方形等基本圖形,以及角的度量、三角形的特徵、分類的基礎上進行教學的,學生對這一知識的理解和掌握又將為進一步學習幾何知識打下堅實的基礎。

  教材的知識它是分成3個部分來呈現的。第一部分是讓學生透過量一量、算一算,初步感知三角形的內角和是180°;第二部分是透過拼角的實驗來探究並歸納三角形內角和的規律,第三部分是運用規律、解決問題。教材這樣編排由發現問題,到驗證問題,再到運用規律,充分體現了知識結構的有序性和強烈的數學建模思想,既符合四年級學生的認知規律,又突出了本課教學的重點。

  3、教學目標

  根據小學數學教學大綱對四年級學生的具體要求,結合教材特點及學生年齡特徵,將本節課的目標制定為以下幾點:

  知識與技能:學生動手操作,在猜想後透過量、剪、拼、折的方法,探索並發現"三角形內角和等於180度"的規律。

  過程與方法:在操作實驗中,讓學生感受圖形的轉化過程及數學建模思想,初步培養學生的空間思維觀念。解決問題:在運用知識解決問題的過程中,感受所學知識的重要性,初步培養學生的應用意識。

  情感態度:透過各種實驗活動,激發學習興趣,體驗學習成功感,並在教學中,感受生活與數學的密切聯絡。

  4、教學重點難點

  根據本節課的教學目標及對編者意圖的理解。將運用各種實驗方法探究三角形內角和為180度的過程並掌握規律,運用規律解決實際問題確定為本節課的教學重點。而同時學生難以理解不易掌握的探究規律的全過程則是本節課的教學難點。

  5、教學具準備

  每個4人小組準備三個不同的三角形(銳角三角形、鈍角三角形、直角三角形的紙片一個,且要求大小不一)、實驗報告單一份;量角器、白板。

  二、說教法學法我要說的第二塊是教法學法。

  新課程標準的基本理念就是要讓學生"人人學有價值的數學"。強調"教學要從學生已有的經驗出發,讓學生親身經歷將實際問題抽象成數學模型並進行解釋與應用的過程"。

  因此,我運用猜想驗證,自主探究,動手操作,直觀演示的教學法,讓學生大膽猜想,自主探索三角形的內角和是多少度?再透過測量、拼折、驗證等方式讓學生確定三角形內角的度數和。這樣,既培養了學生的觀察能力和歸納概括能力,又體現了學生動手實踐、合作交流,自主探索的學習方式。

  在整個教學設計上力求充分體現"以學生髮展為本"教育理念,將教學思路擬定為"故事設疑匯入--猜想驗證{自主探究}--鞏固新知—數學文化—課堂總結",努力構建探索型的課堂教學模式。當然,一堂課的效果如何,還要看課堂結構是否合理。接下來,我就來說說我的教學程式設計。

  三、說教學流程

  根據我對教材的把握和對學情的瞭解,設計了5個環節展開教學。

  四、創設情境,發現問題

  一天,圖形王國舉行了一場盛大的宴會,正在大家聊得熱火朝天的時候,突然下面傳來了一陣吵鬧聲,圖形王國的國王“點”來到爭吵的地方一看,原來是三角形家族在爭吵,只聽一個鈍角三角形說:“我有一個內角是最大的,所以我的三角和也是最大的。”,這時候一個銳角三角形說“我長得比你大,所以說我的內角和才是最大的!”,這時,一個直角三角形弱弱的說了一句:“誰長的大,誰的內角和就最大,這不公平!!!”,於是他們就讓國王來評理,聽到這裡國王的也糊塗了:“你們說的都是什麼呀?什麼是三角形的內角,什麼是三角形的內角和呀?”

  五、合作交流,引導探究

  (1)學生自然想到要量出三角形每個角的度數就能夠求出三角形的內角和,從而證明三角形的內角和與三角形的大小和形狀沒有關係都接近180度。

  (2)教師要組織學生進行小組合作每人用量角器量出一種三角形(銳角三角形、鈍角三角形、直角三角形)的三個內角並計算出它們的總和是多少?

  (3)記錄小組測量結果及討論結果

  實驗名稱:三角形內角和

  實驗目的:探究三角形內角和是多少度。

  實驗材料:量角器,銳角三角形紙片,直角三角形紙片,鈍角三角形紙片。

  (4)學生彙報量的方法,師請同學評價這種方法。

  師小結:直接量的方法挺好,雖然測量有誤差,不準,但我們能知道,三角形的內角和只能在180°左右,究竟是不是一定就是180度呢,誰還有別的方法?

  (一)剪拼法

  學生彙報後師小結:能想到這個方法不簡單,拼成的看起來像平角,到底是不是平角呢,我們一起來試試看。(教師和學生剪一剪、拼一拼)

  師:把三角形的三個內角湊到了一起,拼成了一個大角,角的兩條邊是不是在一條直線上呢?看起來挺象的,但在操作的過程中難免會產生誤差,有時會差一點點,誰還有別的方法確定三角形的內角和一定是180°?

  (二)折拼法

  學生彙報後師小結:我們要研究三角形的內角和,實際上就是想辦法把三角形的三個內角湊到一起,像剪和折的方法,看三個內角拼到一起是不是180度,都是藉助我們學過的平角解決的問題。

  這三種方法都不錯,在操作的過程中,有時會有誤差,不太有說服力。想一想,你還能不能借助我們學過的哪種圖形,想辦法說明三角形的內角和一定是180度?

  (三)演繹推理法

  (藉助學過的長方形,把一個長方形沿對角線分成兩個三角形。)

  師:你認為這種方法好不好?我們看看是不是這麼回事。

  (演示課件:兩個完全相同的三角形內角和等於360°,一個三角形內角和等於180°)

  師小結:這種方法避免了在剪拼過程中由於操作出現的誤差,非常準確的說明了三角形的內角和一定是180度。

  (學生透過小組合作的方式學到方法,分享經驗,更重要的是領悟到科學研究問題的方法。就學生的發展而言,探究的過程比探究獲得的結論更有價值。)

  學生用的方法會非常多,但它們的思維水平是不平行的。

  直接測量法是學生利用已有的知識,測量出每個角的度數,再用加法求和;

  拼角求和法,也就是間接剪拼和折拼這兩種方法,都是透過拼成一個特殊角,也就是平角來解決問題;而演繹推理法,即把兩個完全相同的三角形合二為一,或把長方形一分為二,成為兩個三角形,這是更深層次的思考。

  前兩種方法是不完全歸納法,能使我們確定研究的範圍只能是180度左右,而不可能是其他任意猜想的度數。最後一種方法具有演繹推理的色彩,把一個長方形沿對角線分成兩個完全相同的三角形後,因為兩個三角形的內角和是原來長方形的四個內角之和360度,所以一個三角形的內角和就是360°÷2=180°,這種方法從科學證明的角度闡述了三角形的內角和,它有嚴密性和精確性。

  六、訓練提高

  使用課本兩道題,以及以下習題

  (1)∠1=35°∠2=47°∠3=()

  (2)∠1=50°∠2=40°∠3=()

  (3)∠1=20°∠2=45°∠3=()

  按著難易程度逐漸提高,鞏固新知。

  七、數學文化

  帕斯卡(BlaisePascal,1623~1662),法國數學家、物理學家、近代機率論的奠基者。早在300多年前這位法國著名的科學家就已經發現了任何三角形的內角和是180度,而他當時才12歲。

  八、課堂總結

  我們用三角形內角和的知識知道了六邊形內角和,那麼五邊形、七邊形……這些多邊形的內角和是多少度?有沒有什麼規律可循,你能用學到的知識和方法去探究問題,相信你還會有一些精彩的發現。

  九、反思

  整節課都在比較愉快的氛圍中展開的,但在小組合作中因為要求不夠明確,導致在合作中出現了問題,不過好在由於我給孩子們足夠的時間,他們能說出:所有三角形都是180度,證明孩子們是學會了的。所以,如果你給孩子足夠的時間,他們會給你意想不到的驚喜。

  《三角形的內角和》說課稿 篇9

尊敬的各位評委,各位老師:

  大家好!

  今天我說課的內容是人教版義務教育課程標準實驗教材數學四年級下冊85頁內容《三角形的內角和》。

  一、教材分析

  新課標把三角形的內角和作為第二學段中三角形的一個重要組成部分。本課是安排在三角形的特性及分類之後進行的,它是學生以後學習多邊形的內角和及解決其它實際問題的基礎。教材所呈現的內容,不但重視體現知識的形成過程,而且注意留給學生充分進行自主探索和交流的空間,安排了量一量、算一算和剪一剪、拼一拼兩個實驗操作活動,意圖使學生在動手操作、合作交流中發現並形成結論。

  二、學情分析

  1、透過前面的學習,學生已經掌握了三角形的一些基礎知識,會用工具量角、畫角,具備了探索三角形內角和的知識與技能基礎。

  2、學生的生活經驗是可利用的教學資源。我在課前瞭解到,已經有不少學生知道了三角形內角和是180度,,但卻不知道怎樣才能得出這個結論,因此學生在這節課上的主要目標是驗證三角形的內角和是180度。

  三、教學目標

  基於以上對教材的分析以及對學生情況的思考,我從知識與技能,過程與方法,情感態度價值觀三方面擬定了本節課的教學目標:

  1、透過"量一量","算一算","拼一拼","折一折"的方法,讓學生推理歸納出三角形內角和是180°,並能應用這一知識解決一些簡單問題。

  2、透過把三角形的內角和轉化為平角進行探究實驗,滲透"轉化"的數學思想。

  3、透過數學活動使學生獲得成功的體驗,增強自信心,培養學生的創新意識,探索精神和實踐能力。

  教學重難點:理解並掌握三角形的內角和是180度這一結論。

  四、教學準備:

  教具:多媒體課件,

  學具:各類三角形、長方形、量角器、活動記錄表等。

  五、教法和學法

  “三角形的內角和”一課,知識與技能目標並不難,但我認為本節課更重要的是透過自主探索與合作交流使學生經歷知識的形成過程,領悟轉化思想在解決問題中的應用,以及在探索過程中,培養學生實事求是、敢於質疑的科學態度,同時,在不同方法的交流中,開拓思維、提升能力。基於以上理念,本節課,我準備引導學生採用自主探究、動手操作、猜想驗證、合作交流的學習方法,並在教學過程中談話激疑,引導探究;組織討論,適時地啟發幫助。使教法和學法和諧統一在“以學生的發展為本”這一教育目標之中。

  六、教學過程

  本節課,我遵循“學生主動和教師指導相統一,問題主線和活動主軸相統一”的原則,制定了以下教學程式:

  (一)創設情境,激發興趣

  “興趣是最好的老師”。開課伊始我利用課件動態演示一隻蝴蝶在把一條繩子圍成不同的三角形。讓學生觀察在圍的過程中,什麼變了?什麼沒變?讓學生在變與不變的觀察與對比中,激發學生的學習興趣,引出本節課的學習內容(板書:三角形的內角和),為後面的探索奠定基礎。

  【設計意圖:以問題情境為出發點,既豐富了學生的感官認識,又激發了學生的學習熱情。】

  (二)動手操作,探索新知

  本環節是學生獲取知識、提高能力的一個重要過程。我有目的、有意識的引導學生主動參與實踐活動、經歷知識的形成過程。

  1、揭示“內角”和“內角和”的概念

  明確“內角”和“內角和”的概念是學生進一步探究內角和度數的前提,本環節首先請學生都拿出一個三角形,指一指三個內角,然後讓學生談談自己對內角和的理解,在大家交流的基礎上得出:三角形的內角和就是三個內角的度數之和。

  2、猜測內角和

  牛頓曾說:“沒有大膽的猜想,就沒有偉大的發現!”所以我放手讓學生猜測三角形內角和的度數,由於絕大多數學生有課外知識的積累,不難說出三角形的內角和是180度,但猜想並不等於結論,三角形的內角和到底是不是180度?(板書:?)還要進一步的驗證。猜想——驗證是學生探究數學的有效途徑。

  3、動手驗證,彙報交流

  (1)介紹學具筐

  由教師介紹學具筐中都有什麼學習材料。

  (2)生獨立思考、動手操作

  因為合作交流應建立在獨立思考的基礎上,所以先讓學生獨立思考:打算選用什麼材料,怎樣來驗證三角形的內角和是不是180°。然後再讓學生把想法付諸實踐。此環節會留給學生充分的思考、操作、發現的時間,讓學生在探索中找到證明的切入點,體驗成功。在這期間,教師走下講臺,參與學生的活動,與學生一起尋找驗證的方法,對有困難的學生提供幫助,不放棄任何一個學生。

  (3)組內交流

  經過獨立思考和動手操作,每人都有了自己的驗證方法,先在小組內交流各自的驗證方法。

  (4)全班彙報交流。

  在足夠的交流之後,開始進入全班彙報展示過程,達到智慧共享的目的。學生可能會出現以下幾種方法:

  A、測量方法

  活動記錄表

  三角形的形狀每個內角的度數三個內角和

  ∠1∠2∠3

  這個驗證方法應是大多數學生都能想到的,在交流彙報結果時會發現答案不統一,可能會出現大於180度、等於180度或小於180度不同的結果。此時學生會在心中產生更大的疑惑,“三角形的內角和到底是多少度?誰的答案正確呢?”在這裡教師要抓住契機,肯定學生實事求是的態度和質疑的精神,把這一問題拋給學生,再次激起學生的探究熱情,強烈的求知慾和好勝心讓學生躍躍欲試,讓學生充分發表觀點,最終使學生認識到測量法會有誤差,看來僅用一種測量的方法來驗證只能得到三角形的內角和在180°左右,到底是不是180°,疑問依然存在,說服力還不夠,此時我順水推舟,讓用不同驗證方法的學生上臺彙報展示。

  B、撕拼法

  我認為數學課不僅是解決數學問題,更重要的'是思維方式的點撥,使數學思想的種子播種在學生的頭腦中。本環節主要想實現向學生滲透“轉化”的數學思想的教學目標。四年級學生在以往的數學學習過程中都積累了不少“轉化”的體驗,但這種體驗基本上處於無意識的狀態,只有合理呈現學習素材,才能使學生對轉化策略形成清晰的認識。所以我請用撕拼法的同學上臺展示撕拼的過程,學生可能會撕拼不同型別的三角形,如:

  此時教師適時追問:你是怎麼想到把三個內角撕下來拼成一個平角來驗證的呢?因為平角是180度,三角形的三個內角拼在一起正好形成了一個平角,所以三角形的內角和就是180度。教師可及時評價點撥:“你們把本不在一起的三個角,透過移動位置,把它轉化成一個平角來驗證,運用了轉化策略,真了不起。”從而使學生清晰的感受到數學學習就是把新知轉化成舊知的過程。

  C、其它方法

  除了以上兩種驗證方法外,學生可能還會出現不同的驗證方法,比如折一折的方法,把三個完全相同的三角形用不同的三個內角拼成一個平角來驗證的方法,例圖:

  如果學生出現用長方形剪成兩個完全相同的直角三角形或把兩個完全相同的直角三角形拼成長方形來驗證的方法,例圖:

  教師可追問:“這種方法只能證明哪一類的三角形呢?”使學生明白,這種驗證方法有侷限性,只能證明直角三角形的內角和是180°。然後教師引導學生歸納出這些不同方法都有異曲同工之妙,就是都運用了轉化的策略,讓學生在不知不覺中進一步感悟轉化在數學學習中的重要作用。透過各種方法的展示交流,學生對三角形內角和是不是180度的疑問已經消除,所以可以把“?”改成“。”

  【設計意圖:《標準》指出:“教師應激發學生的積極性,向學生提供充分從事數學活動的機會,幫助他們在自主探索和合作交流的過程中真正理解和掌握基本的數學知識與技能、數學思想和方法,獲得廣泛的數學活動經驗。”在教學設計中我注意體現這一理念,允許學生根據已有的知識經驗進行猜測,在猜測後先獨立思考驗證的方法,再進行小組交流。給學生充分的活動時間和空間,讓學生動手操作,使學生在量、剪、拼、折等一系列實驗活動中理解和掌握三角形內角和是180°這個圖形性質。在探索活動中,使學生學會與他人合作,同時也使學生學到了怎樣由已知探索未知的思維方式與方法,培養他們主動探索的精神,讓學生在活動中學習,在活動中發展。】

  4、科學驗證方法

  數學是一門嚴謹的學科,數學結論的得出必須經過嚴格的證明。那如何科學地驗證三角形內角和是不是180°呢?用課件動態演示科學家的驗證方法。

  【設計意圖:一方面使學生為自己猜想的結論能被證明而產生滿足感;另一方面使學生體會到數學是嚴謹的,從小就應該讓學生養成嚴謹、認真、實事求是的學習態度。】

  (三)課外拓展,積澱文化

  為了使學生在獲得數學知識的同時積澱數學文化,用課件介紹最早發現三角形內角和秘密的法國科學家帕斯卡(課件)讓學生交流:聽了這個故事,你想說什麼?在學生交流的基礎上,教師抓住契機,及時鼓勵學生:這節課才10歲的我們利用自己的智慧發現了帕斯卡12歲時數學發現,我們同樣了不起,劉老師為大家感到驕傲!(板書:!)這個感嘆號不僅表示教師對學生的讚歎,更是學生對自我的一種肯定,獲得成功的自豪感。

  【設計意圖:適當的引入課外知識,它既可以激發學生的學習興趣,又有機的滲透了向帕斯卡學習,做一個善於思考、善於發現的孩子,對學生的情感、態度、價值觀的形成與發展能起到了潛移默化的作用。】

  (四)應用新知,解決問題

  數學規律的形成與深化,不僅靠感知,還要輔以靈活、有趣、有層次的課堂訓練,以達到練習的有效性。對此,我設計了三個層次的練習:

  1、把兩個小三角形拼成一起,大三形的內角和是多少度?為什麼?

  【設計意圖:透過兩個三角形分與合的過程,讓學生進一步理解三角形內角和等於180度這個結論,認識到三角形的內角和不因三角形的大小而改變。】

  2、想一想,做一做

  在一個三角形ABC中,已知∠A═45°,∠B═85,求∠с的度數。

  在一個直角三角形中,已知∠с═52,求∠A的度數。

  爸爸給小紅買了一個等腰三角形的風箏。它的一個底角是70°,它的頂角是多少度?

  【設計意圖:將三角形內角和知識與三角形特徵結合起來,引導學生綜合運用內角和知識和直角三角形、等腰三角形等圖形特徵求三角形內角的度數。】

  3、思考:

  你能畫出一個有兩個直角或兩個鈍角的三角形嗎?為什麼?

  【設計意圖:將三角形內角和知識與三角形的分類知識結合起來,引導學生運用三角形內角和的知識去解釋直角三角形、鈍角三角形中角的特徵,較好地溝通了知識之間的聯絡。】

  (五)全課小結,完善新知

  你在這堂課中有什麼收穫?

  【設計意圖:這樣用談話的方式進行總結,不僅總結了所學知識技能,還體現了學法的指導,增強了情感體驗。】

  板書設計:

  三角形的內角和180°

  三角形的形狀每個內角的度數三個內角和

  ∠1∠2∠3

  總之,本節課我力圖引導學生透過自主探究、合作交流,讓學生充分經歷一個知識的學習過程,讓學生學會數學、會學數學、愛學數學。在教學中,隨時會生成一些新教學資源,課堂的生成一定大於課前預設,我將及時調整我的預案,以達到最佳的教學效果。

  教學特色:

  本節課我努力體現以下2個教學特色:

  1、引導學生自主探索,激發學生的學習興趣,體現以學生的發展為本的教學理念。

  2、強化學生探究學習的心理體驗,把數學學習和情感態度的發展有機的結合起來。

  《三角形的內角和》說課稿 篇10

  一、說教材

  說課內容:人教版義務教育課程標準實驗教科書數學第八冊第85頁例5——三角形的內角和。

  “三角形的內角和”是三角形的一個重要性質。它有助於學生理解三角形的三個內角之間的關係,是掌握多邊形內角和及解決其他實際問題的基礎,因此,掌握三角形的內角和是180度這一規律對學生的後繼學習具有重要意義。在此之前,學生已經掌握了三角形的概念、分類,熟悉了銳角、直角、鈍角、平角這些角的知識,也可能有部分學生已經知道三角形的內角和是180°,但“知其然而不知其所以然”。所以本課的重點不在於瞭解,而在於驗證和應用,同時發展學生的空間觀念和思維能力、解決問題的能力。

  (一)教學目標

  1、知道三角形的內角和等於180°,能運用這一規律進行有關的計算。

  2、透過觀察、操作和實驗探索等活動,發展學生的空間觀念,培養學生的思維能力。

  3、經歷三角形的內角和等於180°這一知識的匯出過程,學會學習幾何知識的方法和科學探究的方法,體驗數學學習的成功。

  (二)教學重點

  讓學生經歷三角形的內角和的匯出過程,能運用這一規律進行有關的計算。

  (三)教學難點

  驗證三角形的內角和等於180°。

  二、說教法和學法

  “要讓學生動手做科學,而不是用耳朵聽科學”是新課標的一個重要理念。在本課的設計上我著力透過引導學生經歷猜想、實驗、驗證、歸納、運用、拓展等過程,牢固掌握新知。具體的策略是:

  (一)創設問題情景,激發學生學習興趣

  透過用一個富有趣味性的動畫情境,讓學生在愉悅的對話中複習舊知,激發興趣,調動他們探索的願望。

  (二)猜想、實驗、驗證,經歷知識的形成過程

  為了使學生自主探究發現三角形的內角和是180°,我安排了兩個環節,一是猜測三角形的內角和大約是180°,二是讓學生透過算一算、拼一拼、折一折等方法驗證這一結論。

  (三)練習層次分明,呈現方式多樣,夯實學生雙基。

  三.說教學程式設計

  依據以上的分析,我的教學流程大致分為四個步驟。

  (一)創設情境,激發興趣,複習匯入

  “興趣是最好的老師”,營造一個趣味盎然的課堂學習環境,能有效地吸引學生參與學習過程。課開始,透過課件演示向學生提出問題:你們認識這些三角形嗎?(課件閃現角)這是三角形的……?(角)每個三角形有幾個角?這一情景巧妙地重現知識,改變了複習的方式,再引出三角形的“內角”及“內角和”的概念,為學生進一步探究三角形的內角和掃除了障礙。接著安排猜角的遊戲,讓學生拿出課前準備的銳角、直角、鈍角三角形,報出其中兩個角的度數,老師馬上報出第三個角的度數,並做好板書記錄。在好奇心的驅動下,學生很快可以進入憤悱狀態,教師便可趁此匯入新課並板書課題:三角形的內角和

  板書:三角形∠1∠2∠3內角和30°40°110°70°80°30°90°75°15°

  (二)自主探究,操作驗證

  讓學生做數學就要讓學生帶著問題,動手、動口、動腦,調動多種感官參與數學學習活動,在活動中獲得知識。教學中我重視留給學生充分進行自主探索和交流的時間和空間,讓學生經歷猜想——驗證的過程,在操作、探索中發現,形成結論。

  1、猜想

  首先我會向學生提出:“請你仔細觀察這個表格,你發現了什麼?”讓學生自主發現三角形的內角和是1800這一規律。

  2、驗證

  然後鼓勵他們:“你發現的這個結論是不是正確的呢?你能不能想辦法驗證?”恰當的提問放飛了學生的思維。學生經過獨立思考與合作交流,預計能反饋出計算、拼、折等幾種驗證的方法。教師在集中反饋時必須向學生明確以下幾點:

  (1)用計算的方法,可能會因為測量有誤差而導致計算的結果有誤差。完成板書。

  三角形∠1∠2∠3內角和30°40°110°180°70°80°30°180°90°75°15°180°

  (2)用拼一拼的方法:要注意為每個內角註上編號再拼,防止搞錯,同時藉助課件加以說明。

  (3)用折一折的方法:要注意第一步折的摺痕要和底邊平行,而且是三角形的中位線。並用課件演示。

  3、總結概括結論並板書:三角形的內角和是180°,然後指導學生看書質疑,並追問:“如果知道三角形的其中兩個角的度數,怎樣求第三個角度數?”以強化結論的運用。

  (三)鞏固運用,夯實雙基

  為了使學生更好地鞏固和應用這一結論,我設計了以下的題組:(課件展示)

  1、猜一猜

  猜一猜小動物背後藏著的角的度數嗎?

  你知道這個遊戲的秘密嗎?

  這一題是用圖示的方法,直介面算出三角形的第3個角的度數。

  2、書本第85頁的做一做

  在一個三角形中,∠1=140°,∠3=25°,求∠2的度數。

  第二題是用文字的呈現方式,讓學生計算出三角形的第三個角的度數。這道題我板書在黑板上,目的是突出解題的規範。

  3、判斷、改錯

  說明利用三角形內角和可以檢測三角形的角的量度結果。

  4、書本第88頁的第9題

  這一題是解決特殊三角形的角的計算問題。

  5、書本第88頁的第10題

  第5題是運用“三角形的內角和是180°”這一結論解決生活中的實際問題。

  這一題組注意結合學生的認知規律,具有較強的針對性和層次性,注意到呈現方式的多樣性,讓學生從“會”過渡到“熟”,從“熟”過渡到“活”。

  (四)總結反饋,拓展延伸

  課末,我會讓學生結合板書,回顧本節課所學的知識,引導學生對從練習中反饋出來的一些易錯、易混的知識加以辨析、強調,進一步加深學生對新學知識與技能的理解與掌握。

  最後再出示兩道拓展性練習題:

  1、拓展延伸

  幫角找朋友:每組卡片中,哪三個角可以組成三角形?

  2、思考題:

  根據三角形的內角和是180°,你能求出下面圖形的內角和嗎?

  引導學生透過解決這些拓展性的練習,滲透數學的化歸思想,再一次強化對學習數學的方法的認識。

  透過設計多層次的練習,放緩了新知的坡度,既有基本練習,鞏固練習,也有發展性練習,努力體現不同層次的學生達到不同的教學目標。同時注意改變練習的呈現方式,使學生在輕鬆愉悅的氣氛中學會新知,形成技能。

  板書設計:三角形的內角和

  《三角形的內角和》說課稿 篇11

尊敬的各位老師:

  你們好!

  今天我說課的內容是北師大版小學數學四年級下第二單元“認識圖形”中探索與發現部分的“三角形的內角和”這部分知識。本課指導學生透過直觀操作的方法,探索並發現三角形內角和等於180°。讓學生在實驗活動中,體驗探索的過程和方法。能使學生應用三角形內角和的性質解決一些簡單問題。在認真學習《數學課程標準》,深入鑽研教材,充分了解學生的基礎上,我準備從以下幾方面進行說課。

  一、說教材

  “認識圖形”是“空間與圖形”的重要內容之一。學生在此之前已經對三角形有了一定的認識。因為教材的小標題為“探索與發現”,所以我主要是透過讓學生在自主探索中學習本課內容。先讓學生明確“內角”的意義,然後引導學生探索三角形內角和等於多少。

  結合學生已經有的知識經驗,對於本課我確立了以下幾個教學目標:

  1、透過測量、撕拼、摺疊等方法,探索和發現三角形三個內角的度數和等於180度。已知三角形兩個角的度數,會求第三個角的度數。

  2、滲透猜想--驗證--結論--運用--引申的學習方法,培養學生動手操作和合作交流的能力,培養學生的探究意識。

  3、培養學生自主學習、積極探索的好習慣,激發學生學習數學應用數學的興趣,體驗學習數學的快樂。

  把教學重難點設定為驗證三角形的內角和是180°,並學會應用。

  二、說教法學法

  本堂課我採取了“開放型的探究式”教學模式,運用“猜一猜——量一量——拼—拼——折一折——看一看……”的教學法,使學生全面參與、全員參與、全程參與,真正確立其主體地位。讓學生知道身邊的數學問題隨處可見,能用自己所學的知識解決生活當中的事情,培養學生的發散思維,進一步激發學生學習數學的熱情。在在具體活動中,我讓學生大膽猜想,自主探索三角形的內角和是多少度?再透過測量、拼折、驗證等方式讓學生確定三角形內角的度數和。這樣,既培養了學生的觀察能力和歸納概括能力,又體現了學生動手實踐、合作交流,自主探索的學習方式,同時也培養了學生探索能力和創新精神。

  三、說教學過程

  本節課,我將重點引導學生從“猜測――驗證”展開學習活動,讓學生感受這種重要的數學思維方式。因此我依據學生的認知規律將教學過程分為以下幾個環節:

  (一)複習舊知

  由於學生在此之前已經學過了一些關於三角形的一些知識,為了讓學生在學習上有一定的連貫性,我首先設計了一個問題“你對三角形有哪些瞭解?”,讓學生在複習當中加深對三角形的認識,自然引出“內角”一詞,為後面的探索奠定基礎。

  (二)創設情境,激趣匯入

  教育家葉聖陶先生也曾經說過:“興趣是最好的老師。”因此,本節課一開始,我採用故事匯入,用兩個大小不同的三角形,創設一個擬人化的對話情境,“大”對“小”說:“你看我個大所以我的內角和一定比你大。”“小”問到:“那可不一定,我雖然個小可我的內角和不一定比你小啊!”兩人爭論不休,請同學們幫忙解決問題,引入今天所要學習的內容。在這一環節中把問題隱藏在情景之中,將會引起學生迫不及待探索研究的興趣,引發學生的思考,要比較內角和的大小,就要知道各自的內角的度數,從而引導學生開始對“三角形的內角和是多少”進行思索,引發學生探知慾望,也為下一步的教學架橋鋪路。

  (三)動手操作,自主探究

  由於學生對三角形的內角和已經產生了一定的求知慾,在此我首先設計了一個問題“什麼是三角形的內角和?怎樣才能求出三角形的內角和?”從而引起學生的繼續思考。在此問題提出的基礎上,我又分別設計了兩個活動。

  活動一:讓每組同學分別畫出大小,形狀不同的若干個三角形,並分別量出三個內角的度數,並求出它們的和。填入記錄表中。活動二:讓學生分組彙報己的記錄表,闡述發現了什麼。

  由於本節課是一節發現探索的課程,所以我在此環節進行了這樣的設計。透過這樣的活動,引導學生從“實際操作”到“具體感知”,再從“具體感知”到“抽象概念”,讓學生初步理解三角形的內角和是180度。在量一量、算一算中產生猜想,在探索中發現,在活動中思考,經歷三角形內角和的研究方法,體會活動結果,進一步激發學生的學習興趣,同時也培養了學生與他人合作交流的意識。

  (四)驗證結論

  學生完成探究活動之後,已經知道了三角形內角和。我做了這樣的提問“除了測量計算出三角形內角和,你還有什麼方法可以驗證三角形內角和是180?”學生可以透過:量一量、拼一拼、折一折的方法,發現三角形的內角和是180度。體會驗證三角形內角和的數學思想方法,加深學生對這部分知識的記憶。

  (五)鞏固練習

  在鞏固練習中,我遵循由易到難的規律,設計了分層訓練。第一層:基本訓練,透過練習明確,會求簡單的三角形內角和。第二層:綜合訓練,透過學生觀察、分析,從紛繁複雜的條件中獲取有價值的資訊解決問題。最後一道實踐活動讓學生根據三角形的內角和探索經驗去探索四邊形的內角和,對知識進行遷移,使學生得到了發展。

  (六)總結評價

  回顧這節課,評價一下自己:你學到了什麼知識?學習的快樂嗎?你覺得小組裡誰在哪方面比較出色或者你有什麼建議想對他說的?

  《三角形的內角和》說課稿 篇12

各位老師:

  下午好!

  今天我們相聚在雲周小學,共同行走在“生本”課堂的道路上。作為一名新教師,我也是抱著一種學習的心態來評課。應老師的這節《三角形內角和》,無論是他的設計,還是他對課的演繹,都充分體現了“以生為本”的理念。

  這節課有以下幾點值得我們去探討:

  一、學生的起點在哪裡?

  既然是生本課堂,那我們在備課之前,就要做到備學生,找起點。新課匯入時,應老師花了一些時間複習三角形的分類和平角的知識,充分喚醒學生對三角形的認知,分類是為了抓住三角形的本質,縮小驗證時選材的範圍,而三個角拼成一個平角的練習,則為學生之後的驗證搭好一個腳手架,降低他們學習的難度。但從課堂上來看,部分學生已經知道三角形內角和是180°,而且當出示平角那道題時,學生立刻說出180°是三角形內角和,而沒有想到平角,這需要我們來反思這個環節的必要性。為什麼學生會聯想到內角和呢?我想可能是應老師在此之前詢問了:“三角形有幾個角?如果告訴你兩個角,會求第三個角嗎?”同樣是為了複習,卻產生了負遷移,反而沒有達成預定的效果。再此之後又介紹“內角”等概念,這樣難免有回課嫌疑。課堂選材要有取捨,我覺得這個環節可以刪除。

  二、既然量正確了,為什麼還要拼?

  有位老師說過:“數學老師和語文老師就是不一樣,語文老師會發散,將一句簡單的話複雜化;而數學老師會收斂,將複雜的例題、方法融匯成一句話。”所以數學課上必須讓學生親身經歷知識的發展過程。在探究過程中,應老師放手讓學生想方法驗證猜想,學生首先會想到量出內角並相加,從反饋來看,學生量得的結果都是180°,既然得到想要的結果了,再拼不是多此一舉了嗎?課堂上應老師也對學生的精確結果趕到意外,究竟量角的誤差在哪裡?

  學生的心裡總是不敢犯錯的,這就會讓很多資料失真。其實誤差不僅僅只是存在於內角總和,還存在於每個內角的度數。課堂反饋上,對於同樣的銳角,學生量出了“60°,40°,80°和55°,45°,80°”同樣一個三角形,為什麼內角度數會有所不同,此時透過對比,讓學生明白量角時有誤差,容易改變角度,看來量不是最準確的方法,而撕角拼角則不會改變它的大小。我想這就是我們為什麼將力氣花在剪拼法上了。

  三、如何凸顯內角和的本質?

  透過各種方法的驗證,我們知道了三角形的內角和是180°,難道點到即止嗎?應老師巧妙藉助幾何畫板,改變三角形的形狀和大小,並引導學生觀察什麼變了,什麼不變?這一簡單的演示卻寓意深遠,無論形狀大小如何改變,三角形內角和永遠是180°,這也從另一個角度說明了三角形為什麼具有穩定性,只要確定兩個角,第三個角永遠的唯一的。結論只是靜態的文字,而課件是動態的演示,這種動靜結合的美渲染了我們的眼球,同時也凸顯了內角和的本質,讓結論更具說服力。

  四、練習設計的創新點在哪裡?

  練習是一節課的精髓,這節課的練習主要分三層,一算二辨三延伸。應老師在練習的設計上很注重一材多用,而且非常有坡度性,這也是本節課最大的亮點。在“只知道一個角”的環節中,應老師設計了只露出一個70°角的等腰三角形,求另兩個角。大多數學生只想到一種情況後,便沾沾自喜,不會更深入思考問題,因為在學生潛意識中總認為正確答案只有一個。這也給了我們一個啟示,關注答案,更要關注學生解題的意識,引導學生從多維角度思考問題。

  這裡我有一個的想法,這個想法也來源於作業本的習題。能不能把70°角改成40°,當學生算出答案後,詢問學生,如果按角分,這是一個什麼三角形?溝通按角分和按邊分三角形的橫向聯絡,在練習中溫故而知新。再設計已知一個角是140°的等腰三角形的練習,打破學生的思維定勢,並不是所有等腰三角形都有兩種可能。之後再詢問:“一個角都不知道,如何求內角。”讓練習更具層次性。

  應老師這節課還有很多值得我們學習的地方,比如應老師自如的教態、親切的語言讓學生倍感溫暖;精心準備的教具讓課堂不再沉悶;精彩的練習讓知識落到實處。以上是我對這節課一些不成熟的想法,希望各位老師給予批評和指正。