查文庫>說課稿> 高中數學《圓的標準方程》說課稿範文

高中數學《圓的標準方程》說課稿

高中數學《圓的標準方程》說課稿範文

  在教學工作者開展教學活動前,時常需要編寫說課稿,藉助說課稿可以更好地提高教師理論素養和駕馭教材的能力。怎樣寫說課稿才更能起到其作用呢?以下是小編幫大家整理的高中數學《圓的標準方程》說課稿範文,歡迎閱讀與收藏。

  高中數學《圓的標準方程》說課稿1

  一、說教學背景

  1、教材結構分析

  《圓的方程》安排在高中數學第二冊(上)第七章第六節。圓作為常見的簡單幾何圖形,在實際生活和生產實踐中有著廣泛的應用。圓的方程屬於解析幾何學的基礎知識,是研究二次曲線的開始,對後續直線與圓的位置關係、圓錐曲線等內容的學習,無論在知識上還是方法上都有著積極的意義,所以本節內容在整個解析幾何中起著承前啟後的作用。

  2、學情分析

  圓的方程是學生在初中學習了圓的概念和基本性質後,又掌握了求曲線方程的一般方法的基礎上進行研究的。但由於學生學習解析幾何的時間還不長、學習程度較淺,且對座標法的運用還不夠熟練,在學習過程中難免會出現困難。另外學生在探究問題的能力,合作交流的意識等方面有待加強。

  根據上述教材結構與內容分析,考慮到學生已有的認知結構和心理特徵,我制定如下教學目標:

  3、教學目標

  (1) 知識目標:

  ①掌握圓的標準方程;

  ②會由圓的標準方程寫出圓的半徑和圓心座標,能根據條件寫出圓的標準方程;

  ③利用圓的標準方程解決簡單的實際問題。

  (2) 能力目標:

  ①進一步培養學生用代數方法研究幾何問題的能力;

  ②加深對數形結合思想的理解和加強對待定係數法的運用;

  ③增強學生用數學的意識。

  (3) 情感目標:

  ①培養學生主動探究知識、合作交流的意識;

  ②在體驗數學美的過程中激發學生的學習興趣。

  根據以上對教材、教學目標及學情的分析,我確定如下的教學重點和難點:

  4、教學重點與難點

  (1)重點:圓的標準方程的求法及其應用。

  (2)難點:

  ①會根據不同的已知條件求圓的標準方程;

  ②選擇恰當的座標系解決與圓有關的實際問題。

  為使學生能達到本節設定的教學目標,我再從教法和學法上進行分析:

  二、教法學法分析

  1、教法分析 為了充分調動學生學習的積極性,本節課採用“啟發式”問題教學法,用環環相扣的問題將探究活動層層深入,使教師總是站在學生思維的最近發展區上。另外我恰當的利用多媒體課件進行輔助教學,藉助資訊科技創設實際問題的情境既能激發學生的學習興趣,又直觀的引導了學生建模的過程。

  2、學法分析 透過推導圓的標準方程,加深對用座標法求軌跡方程的理解。透過求圓的標準方程,理解必須具備三個獨立的條件才可以確定一個圓。透過應用圓的標準方程,熟悉用待定係數法求的過程。

  下面我就對具體的教學過程和設計加以說明:

  三、教學過程與設計

  整個教學過程是由七個問題組成的問題鏈驅動的,共分為五個環節:

  創設情境

  啟迪思維

  深入探究

  獲得新知

  應用舉例

  鞏固提高

  下面我從縱橫兩方面敘述我的教學程式與設計意圖。

  首先:縱向敘述教學過程

  (一)創設情境——啟迪思維

  問題一 已知隧道的截面是半徑為4m的半圓,車輛只能在道路中心線一側行駛,一輛寬為2。7m,高為3m的貨車能不能駛入這個隧道?

  透過對這個實際問題的探究,把學生的思維由用勾股定理求線段CD的長度轉移為用曲線的方程來解決。一方面幫助學生回顧了舊知——求軌跡方程的一般方法,另一方面,在得到汽車不能透過的結論的同時學生自己推匯出了圓心在原點,半徑為4的圓的標準方程,從而很自然的進入了本課的主題。用實際問題創設問題情境,讓學生感受到問題來源於實際,應用於實際,激發了學生的學習興趣和學習慾望。這樣獲取的知識,不但易於保持,而且易於遷移。

  透過對問題一的探究,抓住了學生的注意力,把學生的思維引到用座標法研究圓的方程上來,此時再把問題深入,進入第二環節。

  (二)深入探究——獲得新知

  問題二

  1、根據問題一的探究能不能得到圓心在原點,半徑為的圓的方程?

  2、如果圓心在,半徑為時又如何呢?

  這一環節我首先讓學生對問題一進行歸納,得到圓心在原點,半徑為4的圓的標準方程後,引導學生歸納出圓心在原點,半徑為r的圓的標準方程。然後再讓學生對圓心不在原點的情況進行探究。我預設了三種方法等待著學生的探究結果,分別是:座標法、圖形變換法、向量平移法。

  得到圓的標準方程後,我設計了由淺入深的三個應用平臺,進入第三環節。

  (三)應用舉例——鞏固提高

  I、直接應用 內化新知

  問題三

  1、寫出下列各圓的標準方程:

  (1)圓心在原點,半徑為3;

  (2)經過點,圓心在點。

  2、寫出圓的圓心座標和半徑。

  我設計了兩個小問題,第一題是直接或間接的給出圓心座標和半徑求圓的標準方程,第二題是給出圓的標準方程求圓心座標和半徑,這兩題比較簡單,可以安排學生口答完成,目的是先讓學生熟練掌握圓心座標、半徑與圓的標準方程之間的關係,為後面探究圓的切線問題作準備。

  II、靈活應用 提升能力

  問題四

  1、求以點為圓心,並且和直線相切的圓的方程。

  2、求過點,圓心在直線上且與軸相切的圓的方程。

  3、已知圓的方程為,求過圓上一點的切線方程。

  你能歸納出具有一般性的結論嗎?

  已知圓的方程是,經過圓上一點的切線的方程是什麼?

  我設計了三個小問題,第一個小題有了剛剛解決問題三的基礎,學生會很快求出半徑,根據圓心座標寫出圓的標準方程。第二個小題有些困難,需要引導學生應用待定係數法確定圓心座標和半徑再求解,從而理解必須具備三個獨立的條件才可以確定一個圓。第三個小題解決方法較多,我預設了四種方法再一次為學生的發散思維創設了空間。最後我讓學生由第三小題的結論進行歸納、猜想,在論證經過圓上一點圓的切線方程的過程中,又一次模擬了真理髮現的過程,使探究氣氛達到高潮。

  III、實際應用 迴歸自然

  問題五 如圖是某圓拱橋的一孔圓拱的示意圖,該圓拱跨度AB=20m,拱高OP=4m,在建造時每隔4m需用一個支柱支撐,求支柱的長度(精確到0。01m)。

  我選用了教材的例3,它是待定係數法求出圓的三個引數的又一次應用,同時也與引例相呼應,使學生形成解決實際問題的一般方法,培養了學生建模的習慣和用數學的意識。

  (四)反饋訓練——形成方法

  問題六

  1、求過原點和點,且圓心在直線上的圓的標準方程。

  2、求圓過點的切線方程。

  3、求圓過點的切線方程。

  接下來是第四環節——反饋訓練。這一環節中,我設計三個小題作為鞏固性訓練,給學生一塊“用武”之地,讓每一位同學體驗學習數學的樂趣,成功的喜悅,找到自信,增強學習數學的願望與信心。另外第3題是我特意安排的一道求過圓外一點的圓的切線方程,由於學生剛剛歸納了過圓上一點圓的切線方程,因此很容易產生思維的負遷移,另外這道題目有兩解,學生容易漏掉斜率不存在的情況,這時引導學生用數形結合的思想,結合初中已有的圓的知識進行判斷,這樣的設計對培養學生思維的嚴謹性具有良好的效果。

  (五)小結反思——拓展引申

  1、課堂小結

  把圓的標準方程與過圓上一點圓的切線方程加以小結,提煉數形結合的思想和待定係數的方法

  ①圓心為,半徑為r 的圓的標準方程為:

  圓心在原點時,半徑為r 的圓的標準方程為:。

  ②已知圓的方程是,經過圓上一點的切線的方程是:。

  2、分層作業

  (A)鞏固型作業:教材P81-82:(習題7。6)1,2,4。(B)思維拓展型作業:試推導過圓上一點的切線方程。

  3、激發新疑

  問題七

  1、把圓的標準方程展開後是什麼形式?

  2、方程表示什麼圖形?

  在本課的結尾設計這兩個問題,作為對這節課內容的鞏固與延伸,讓學生體會知識的起點與終點都蘊涵著問題,舊的問題解決了,新的問題又產生了。在知識的拓展中再次掀起學生探究的熱情。另外它為下節課研究圓的一般方程作了重要的準備。

  以上是我縱向的教學過程及簡單的設計意圖,接下來,我從三個方面橫向的進一步闡述我的教學設計:

  橫向闡述教學設計

  (一)突出重點 抓住關鍵 突破難點

  求圓的標準方程既是本節課的教學重點也是難點,為此我佈設了由淺入深的學習環境,先讓學生熟悉圓心、半徑與圓的標準方程之間的關係,逐步理解三個引數的重要性,自然形成待定係數法的解題思路,在突出重點的同時突破了難點。

  第二個教學難點就是解決實際應用問題,這是學生固有的難題,主要是因為應用問題的題目冗長,學生很難根據問題情境構建數學模型,缺乏解決實際問題的信心,為此我首先用一道題目簡潔、貼近生活的例項進行引入,激發學生的求知慾,同時我藉助多媒體課件的.演示,引導學生真正走入問題的情境之中,並從中抽象出數學模型,從而消除畏難情緒,增強了信心。最後再形成應用圓的標準方程解決實際問題的一般模式,並嘗試應用該模式分析和解決第二個應用問題——問題五。這樣的設計,使學生在解決問題的同時,形成了方法,難點自然突破。

  (二)學生主體 教師主導 探究主線

  本節課的設計用問題做鏈,環環相扣,使學生的探究活動貫穿始終。從圓的標準方程的推導到應用都是在問題的指引、我的指導下,由學生探究完成的。另外,我重點設計了兩次思維發散點,分別是問題二和問題四的第三問,要求學生分組討論,合作交流,為學生設立充分的探究空間,學生在交流成果的過程中,既體驗了科學研究和真理髮現的複雜與艱辛,又在我的適度引導、側面幫助、不斷肯定下順利完成了探究活動並走向成功,在一個個問題的驅動下,高效的完成本節的學習任務。

  (三)培養思維 提升能力 激勵創新

  為了培養學生的理性思維,我分別在問題一和問題四中,設計了兩次由特殊到一般的學習思路,培養學生的歸納概括能力。在問題的設計中,我利用一題多解的探究,縱向挖掘知識深度,橫向加強知識間的聯絡,培養了學生的創新精神,並且使學生的有效思維量加大,隨時對所學知識和方法產生有意注意,使能力與知識的形成相伴而行。

  以上是我對這節課的教學預設,具體的教學過程還要根據學生在課堂中的具體情況適當調整,向生成性課堂進行轉變。最後我以赫爾巴特的一句名言結束我的說課,發揮我們的創造性,力爭“使教育過程成為一種藝術的事業”。

  高中數學《圓的標準方程》說課稿2

  一、說教材:

  1、 地位及作用:

  “橢圓及其標準方程”是高中《解析幾何》第二章第七節內容,是本書的重點內容之一,也是歷年高考、會考的必考內容,是在學完求曲線方程的基礎上,進一步研究橢圓的特性,以完成對圓錐曲線的全面研究,為今後的學習打好基礎,因此本節內容具有承前啟後的作用。

  2、 教學目標:

  根據《教學大綱》,《考試說明》的要求,並根據教材的具體內容和學生的實際情況,確定本節課的教學目標:

  (1)知識目標:掌握橢圓的定義和標準方程,以及它們的應用。

  (2)能力目標:

  (a)培養學生靈活應用知識的能力。

  (b) 培養學生全面分析問題和解決問題的能力。

  (c)培養學生快速準確的運算能力。

  (3)德育目標:培養學生數形結合思想,類比、分類討論的思想以及確立從感性到理性認識的辯證唯物主義觀點。

  3、 重點、難點和關鍵點:

  因為橢圓的定義和標準方程是解決與橢圓有關問題的重要依據,也是研究雙曲線和拋物線的基礎,因此,它是本節教材的重點;由於學生推理歸納能力較低,在推導橢圓的標準方程時涉及到根式的兩次平方,並且運算也較繁,因此它是本節課的難點;座標系建立的好壞直接影響標準方程的推導和化簡,因此建立一個適當的直角座標系是本節的關鍵。

  二、 說教材處理

  為了完成本節課的教學目標,突出重點、分散難點、根據教材的內容和學生的實際情況,對教材做以下的處理:

  1、學生狀況分析及對策:

  2、教材內容的組織和安排:

  本節教材的處理上按照人們認識事物的規律,遵循由淺入深,循序漸進,層層深入的原則組織和安排如下:

  (1)複習提問

  (2)引入新課

  (3)新課講解

  (4)反饋練習

  (5)歸納總結

  (6)佈置作業

  三、 說教法和學法

  1、為了充分調動學生學習的積極性,是學生變被動學習為主動而愉快的學習,引導學生自己動手,讓學生的思維活動在教師的引導下層層展開。請學生參與課堂。加強方程推導的指導,是傳授知識與培養能力有機的溶為一體,為此,本節課採用“引導教學法”。

  2、利用電腦所畫圖形的動態演示總結規律。同時利用電腦的動態演示激發學生的學習興趣。

  四、 教學過程

  教學環節

  3、設a(-2,0),b(2,0),三角形abp周長為10,動點p軌跡方程。

  例1屬基礎,主要反饋學生掌握基本知識的程度。

  例2可強化基本技能訓練和基本知識的靈活運用。

  小結

  為使學生對本節內容有一個完整深刻的認識,教師引導學生從以下幾個方面進行小結。

  1、橢圓的定義和標準方程及其應用。

  2、橢圓標準方程中a,b,c諸關係。

  3、求橢圓方程常用方法和基本思路。

  透過小結形成知識體系,加深對本節知識的理解培養學生的歸納總結能力,增強學生學好圓錐曲線的信心。

  佈置作業

  (1) 77頁——78頁 1,2,3,79頁 11

  (2) 預習下節內容

  鞏固本節所學概念,強化基本技能訓練,培養學生良好的學習習慣和品質,發現和彌補教學中的遺漏和不足。