查文庫>說課稿> 高中數學集合的說課稿

高中數學的說課稿

高中數學集合的說課稿

  在教師需要進行集合的教學時,相關的說課稿應該如何準備呢?下面是小編分享給大家的高中數學集合的說課稿,歡迎閱讀。

  一、教材分析

  集合概念及其基本理論,稱為集合論,是近、現代數學的一個重要的基礎,一方面,許多重要的數學分支,都建立在集合理論的基礎上。另一方面,集合論及其所反映的數學思想,在越來越廣泛的領域種得到應用。

  本節課主要分為兩個部分,一是理解集合的定義及一些基本特徵。二是掌握集合與元素之間的關係。

  二、教學目標

  1、學習目標

  (1)透過例項,瞭解集合的含義,體會元素與集合之間的關係以及理解“屬

  於”關係;

  (2)能選擇自然語言、圖形語言、集合語言(列舉法或描述法)描述不同的具體問題,感受集合語言的意義和作用;

  2、能力目標

  (1)能夠把一句話一個事件用集合的方式表示出來。

  (2)準確理解集合與及集合內的元素之間的關係。

  3、情感目標

  透過本節的把實際事件用集合的方式表示出來,從而培養數學敏感性,了 解到數學於生活中。

  三、教學重點與難點

  重點 集合的基本概念與表示方法;

  難點 運用集合的兩種常用表示方法———列舉法與描述法,正確表示一些簡單的集合;

  四、教學方法

  (1)本課將採用探究式教學,讓學生主動去探索,激發學生的學習興趣。並分層教學,這樣可顧及到全體學生,達到優生得到培養,後進生也有所收穫的效果;

  (2)學生在老師的引導下,透過閱讀教材,自主學習、思考、交流、討論和概括,從而完成本節課的教學目標。

  五、學習方法

  (1)主動學習法:舉出例子,提出問題,讓學生在獲得感性認識的同時,

  教師層層深入,啟發學生積極思維,主動探索知識,培養學生思維想象 的綜合能力。

  (2)反饋補救法:在練習中,注意觀察學生對學習的反饋情況,以實現“培

  優扶差,滿足不同。”

  六、教學思路

  具體的思路如下

  複習的引入:講一些集合的相關數學及相關數學家的經歷故事!這可以讓學生更加了解數學史從何使學生對數學更加感興趣,有助於上課的效率!因為時間關係這裡我就不說相關數學史咯。

  一、 引入課題

  軍訓前學校通知:8月15日8點,高一年段在體育館集合進行軍訓動員;試問這個通知的物件是全體的高一學生還是個別學生?

  在這裡,集合是我們常用的一個詞語,我們感興趣的是問題中某些特定(是高一而不是高二、高三)物件的總體,而不是個別的物件,為此,我們將學習一個新的概念——集合,即是一些研究物件的總體。

  二、 正體部分

  學生閱讀教材,並思考下列問題:

  (1)集合有那些概念?

  (2)集合有那些符號?

  (3)集合中元素的特性是什麼?

  (4)如何給集合分類?

  (一)集合的有關概念

  (1)物件:我們可以感覺到的客觀存在以及我們思想中的事物或抽象符號,

  都可以稱作物件.

  (2)集合:把一些能夠確定的不同的物件看成一個整體,就說這個整體是由

  這些物件的全體構成的集合.

  (3)元素:集合中每個物件叫做這個集合的元素.

  集合通常用大寫的拉丁字母表示,如A、B、C、??元素通常用小寫的拉丁字母表示,如a、b、c、??

  1. 思考:課本P3的思考題,並再列舉一些集合例子和不能構成集合的例子,

  對學生的例子予以討論、點評,進而講解下面的問題。

  2、元素與集合的關係

  (1)屬於:如果a是集合A的元素,就說a屬於A,記作a∈A。(舉例)集合A={2,3,4,6,9}a=2 因此我們知道 a∈A

  (2)不屬於:如果a不是集合A的元素,就說a不屬於A,記作a?A

  要注意“∈”的.方向,不能把a∈A顛倒過來寫. (舉例)

  集合A={3,4,6,9}a=2 因此我們知道a?A

  3、集合中元素的特性

  (1)確定性:給定一個集合,任何物件是不是這個集合的元素是確定的了.

  (2)互異性:集合中的元素一定是不同的.

  (3)無序性:集合中的元素沒有固定的順序.

  4、集合分類

  根據集合所含元素個屬不同,可把集合分為如下幾類:

  (1)把不含任何元素的集合叫做空集Ф

  (2)含有有限個元素的集合叫做有限集

  (3)含有無窮個元素的集合叫做無限集

  注:應區分?,{?},{0},0等符號的含義

  5、常用數集及其表示方法

  (1)非負整數集(自然數集):全體非負整數的集合.記作N

  (2)正整數集:非負整數集內排除0的集.記作N*或N+

  (3)整數集:全體整數的集合.記作Z

  (4)有理數集:全體有理數的集合.記作Q

  (5)實數集:全體實數的集合.記作R

  注:(1)自然數集包括數0.

  (2)非負整數集內排除0的集.記作N*或N+,Q、Z、R等其它數集內排

  除0的集,也這樣表示,例如,整數集內排除0的集,表示成Z*

  (二)集合的表示方法

  我們可以用自然語言來描述一個集合,但這將給我們帶來很多不便,除此之外還常用列舉法和描述法來表示集合。

  (1) 列舉法:把集合中的元素一一列舉出來,寫在大括號內。

  如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},?;

  例1.(課本例1)

  思考2,引入描述法

  說明:集合中的元素具有無序性,所以用列舉法表示集合時不必考慮元素的順序。

  (2) 描述法:把集合中的元素的公共屬性描述出來,寫在大括號{}內。 具體方法:在大括號內先寫上表示這個集合元素的一般符號及取值(或變化)範圍,再畫一條豎線,在豎線後寫出這個集合中元素所具有的共同特徵。

  如:{x|x-3>2},{(x,y)|y=x2+1},{直角三角形},?;

  例2.(課本例2)

  說明:(課本P5最後一段)

  思考3:(課本P6思考) 強調:描述法表示集合應注意集合的代表元素

  {(x,y)|y= x2+3x+2}與 {y|y= x2+3x+2}不同,只要不引起誤解,集合的代表元素也可省略,例如:{整數},即代表整數集Z。

  辨析:這裡的{ }已包含“所有”的意思,所以不必寫{全體整數}。下列寫法{實數集},{R}也是錯誤的。

  說明:列舉法與描述法各有優點,應該根據具體問題確定採用哪種表示法,要注意,一般集合中元素較多或有無限個元素時,不宜採用列舉法。

  (三)課堂練習(課本P6練習)

  三、 歸納小結與作業

  本節課從例項入手,非常自然貼切地引出集合與集合的概念,並且結合例項對集合的概念作了說明,然後介紹了集合的常用表示方法,包括列舉法、描述法。

  書面作業:習題1.1,第1- 4題