查文庫>知識點總結> 初中數學定理公式知識點總結

初中數學定理公式知識點總結

初中數學定理公式知識點總結

  總結是指對某一階段的工作、學習或思想中的經驗或情況加以總結和概括的書面材料,它可使零星的、膚淺的、表面的感性認知上升到全面的、系統的、本質的理性認識上來,不如靜下心來好好寫寫總結吧。總結怎麼寫才是正確的呢?以下是小編為大家收集的初中數學定理公式知識點總結,僅供參考,大家一起來看看吧。

初中數學定理公式知識點總結1

  一、基本知識

  ㈠、數與代數A、數與式:

  1、有理數

  有理數:

  ①整數→正整數/0/負整數

  ②分數→正分數/負分數

  數軸:

  ①畫一條水平直線,在直線上取一點表示0(原點),選取某一長度作為單位長度,規定直線上向右的方

  向為正方向,就得到數軸。

  ②任何一個有理數都可以用數軸上的一個點來表示。

  ③如果兩個數只有符號不同,那麼我們稱其中一個數為另外一個數的相反數,也稱這兩個數互為相反數。在數軸上,表示互為相反數的兩個點,位於原點的兩側,並且與原點距離相等。

  ④數軸上兩個點表示的數,右邊的總比左邊的大。正數大於0,負數小於0,正數大於負數。

  絕對值:

  ①在數軸上,一個數所對應的點與原點的距離叫做該數的絕對值。②正數的絕對值是他的本身、負數的

  絕對值是他的相反數、0的絕對值是0。兩個負數比較大小,絕對值大的反而小。

  有理數的運算:

  加法:

  ①同號相加,取相同的符號,把絕對值相加。

  ②異號相加,絕對值相等時和為0;絕對值不等時,取絕對值較大的數的符號,並用較大的絕對值減去較小的絕對值。

  ③一個數與0相加不變。

  減法:減去一個數,等於加上這個數的相反數。

  乘法:①兩數相乘,同號得正,異號得負,絕對值相乘。

  ②任何數與0相乘得0。

  ③乘積為1的兩個有理數互為倒數。除法:①除以一個數等於乘以一個數的倒數。

  ②0不能作除數。

  乘方:求N個相同因數A的積的運算叫做乘方,乘方的結果叫冪,A叫底數,N叫次數。混合順序:先算乘法,再算乘除,最後算加減,有括號要先算括號裡的。2、實數

  無理數:無限不迴圈小數叫無理數

  平方根:

  ①如果一個正數X的平方等於A,那麼這個正數X就叫做A的算術平方根。

  ②如果一個數X的平方等於A,那麼這個數X就叫做A的平方根。③一個正數有2個平方根/0的平方根為0/負數沒有平方根。

  ④求一個數A的平方根運算,叫做開平方,其中A叫做被開方數。

  立方根:

  ①如果一個數X的立方等於A,那麼這個數X就叫做A的立方根。

  ②正數的立方根是正數、0的立方根是0、負數的立方根是負數。③求一個數A的立方根的運算叫開立方,其中A叫做被開方數。

  實數:

  ①實數分有理數和無理數。

  ②在實數範圍內,相反數,倒數,絕對值的意義和有理數範圍內的相反數,倒數,絕對值的意義完全一樣。③每一個實數都可以在數軸上的一個點來表示。3、代數式

  代數式:單獨一個數或者一個字母也是代數式。

  合併同類項:①所含字母相同,並且相同字母的指數也相同的項,叫做同類項。

  ②把同類項合併成一項就叫做合併同類項。

  ③在合併同類項時,我們把同類項的係數相加,字母和字母的指數不變。

  4、整式與分式

  整式:①數與字母的乘積的代數式叫單項式,幾個單項式的和叫多項式,單項式和多項式統稱整式。

  ②一個單項式中,所有字母的指數和叫做這個單項式的次數。③一個多項式中,次數最高的項的次數叫做這個多項式的次數。整式運算:加減運算時,如果遇到括號先去括號,再合併同類項。冪的運算:AM+AN=A(M+N)

  (AM)N=AMN

  (A/B)N=AN/BN除法一樣。

  整式的乘法:①單項式與單項式相乘,把他們的係數,相同字母的冪分別相乘,其餘字母連同他的指數不變,作

  為積的因式。

  ②單項式與多項式相乘,就是根據分配律用單項式去乘多項式的每一項,再把所得的積相加。③多項式與多項式相乘,先用一個多項式的每一項乘另外一個多項式的每一項,再把所得的積相加。

  公式兩條:平方差公式/完全平方公式

  整式的除法:①單項式相除,把係數,同底數冪分別相除後,作為商的因式;對於只在被除式裡含有的字母,則

  連同他的指數一起作為商的一個因式。

  ②多項式除以單項式,先把這個多項式的每一項分別除以單項式,再把所得的商相加。

  分解因式:把一個多項式化成幾個整式的積的形式,這種變化叫做把這個多項式分解因式。方法:提公因式法、運用公式法、分組分解法、十字相乘法。

  分式:①整式A除以整式B,如果除式B中含有分母,那麼這個就是分式,對於任何一個分式,分母不為0。

  ②分式的分子與分母同乘以或除以同一個不等於0的整式,分式的值不變。分式的運算:

  乘法:把分子相乘的積作為積的分子,把分母相乘的積作為積的分母。除法:除以一個分式等於乘以這個分式的倒數。

  加減法:①同分母分式相加減,分母不變,把分子相加減。②異分母的分式先通分,化為同分母的分式,再加減。分式方程:①分母中含有未知數的方程叫分式方程。②使方程的分母為0的解稱為原方程的增根。B、方程與不等式1、方程與方程組

  一元一次方程:①在一個方程中,只含有一個未知數,並且未知數的指數是1,這樣的方程叫一元一次方程。

  ②等式兩邊同時加上或減去或乘以或除以(不為0)一個代數式,所得結果仍是等式。

  解一元一次方程的步驟:去分母,移項,合併同類項,未知數係數化為1。

  二元一次方程:含有兩個未知數,並且所含未知數的項的次數都是1的方程叫做二元一次方程。二元一次方程組:兩個二元一次方程組成的方程組叫做二元一次方程組。適合一個二元一次方程的一組未知數的值,叫做這個二元一次方程的一個解。二元一次方程組中各個方程的公共解,叫做這個二元一次方程的解。解二元一次方程組的方法:代入消元法/加減消元法。

  一元二次方程:只有一個未知數,並且未知數的項的最高係數為2的方程1)一元二次方程的二次函式的關係

  大家已經學過二次函式(即拋物線)了,對他也有很深的瞭解,好像解法,在圖象中表示等等,其實一元二次方程也可以用二次函式來表示,其實一元二次方程也是二次函式的一個特殊情況,就是當Y的0的時候就構成了一元二次方程了。那如果在平面直角座標系中表示出來,一元二次方程就是二次函式中,圖象與X軸的交點。也就是該方程的解了2)一元二次方程的解法

  大家知道,二次函式有頂點式(-b/2a,4ac-b2/4a),這大家要記住,很重要,因為在上面已經說過了,一元二次方程也是二次函式的一部分,所以他也有自己的一個解法,利用他可以求出所有的一元一次方程的解(1)配方法

  利用配方,使方程變為完全平方公式,在用直接開平方法去求出解(2)分解因式法

  提取公因式,套用公式法,和十字相乘法。在解一元二次方程的時候也一樣,利用這點,把方程化為幾個乘積的

  形式去解(3)公式法

  這方法也可以是在解一元二次方程的萬能方法了,方程的根X1={-b+√[b2-4ac)]}/2a,X2={-b-√[b2-4ac)]}/2a3)解一元二次方程的步驟:(1)配方法的步驟:

  先把常數項移到方程的右邊,再把二次項的係數化為1,再同時加上1次項的係數的一半的平方,最後配成完全平方公式

  (2)分解因式法的步驟:

  把方程右邊化為0,然後看看是否能用提取公因式,公式法(這裡指的是分解因式中的公式法)或十字相乘,如果可以,就可以化為乘積的形式(3)公式法

  就把一元二次方程的各系數分別代入,這裡二次項的係數為a,一次項的係數為b,常數項的係數為c4)韋達定理

  利用韋達定理去了解,韋達定理就是在一元二次方程中,二根之和=-b/a,二根之積=c/a

  也可以表示為x1+x2=-b/a,x1x2=c/a。利用韋達定理,可以求出一元二次方程中的各系數,在題目中很常用5)一元一次方程根的情況

  利用根的判別式去了解,根的判別式可在書面上可以寫為“△”,讀作“diaota”,而△=b2-4ac,這裡可以分為3種情況:

  I當△>0時,一元二次方程有2個不相等的實數根;II當△=0時,一元二次方程有2個相同的實數根;

  III當△B,A+C>B+C在不等式中,如果減去同一個數(或加上一個負數),不等式符號不改向;例如:A>B,A-C>B-C在不等式中,如果乘以同一個正數,不等號不改向;例如:A>B,A*C>B*C(C>0)在不等式中,如果乘以同一個負數,不等號改向;例如:A>B,A*C系內描出它的對應點,所有這些點組成的圖形叫做該函式的圖象。②正比例函式Y=KX的圖象是經過原點的一條直線。

  ③在一次函式中,當K〈0,B〈O,則經234象限;當K〈0,B〉0時,則經124象限;當K〉0,B〈0時,則經134象限;當K〉0,B〉0時,則經123象限。

  ④當K〉0時,Y的值隨X值的增大而增大,當X〈0時,Y的值隨X值的增大而減少。

  ㈡空間與圖形A、圖形的認識1、點,線,面

  點,線,面:①圖形是由點,線,面構成的。

  ②面與面相交得線,線與線相交得點。③點動成線,線動成面,面動成體。

  展開與摺疊:①在稜柱中,任何相鄰的兩個面的交線叫做稜,側稜是相鄰兩個側面的交線,稜柱的所有側稜長相

  等,稜柱的上下底面的形狀相同,側面的形狀都是長方體。②N稜柱就是底面圖形有N條邊的稜柱。

  截一個幾何體:用一個平面去截一個圖形,截出的面叫做截面。檢視:主檢視,左檢視,俯檢視。

  多邊形:他們是由一些不在同一條直線上的線段依次首尾相連組成的封閉圖形。弧、扇形:①由一條弧和經過這條弧的端點的兩條半徑所組成的圖形叫扇形。

  ②圓可以分割成若干個扇形。

  2、角

  線:①線段有兩個端點。

  ②將線段向一個方向無限延長就形成了射線。射線只有一個端點。③將線段的兩端無限延長就形成了直線。直線沒有端點。④經過兩點有且只有一條直線。

  比較長短:①兩點之間的所有連線中,線段最短。

  ②兩點之間線段的長度,叫做這兩點之間的距離。

  角的度量與表示:①角由兩條具有公共端點的射線組成,兩條射線的公共端點是這個角的頂點。

  ②一度的1/60是一分,一分的1/60是一秒。

  角的比較:①角也可以看成是由一條射線繞著他的端點旋轉而成的。

  ②一條射線繞著他的端點旋轉,當終邊和始邊成一條直線時,所成的角叫做平角。始邊繼續旋轉,當他又和始邊重合時,所成的角叫做周角。

  ③從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線。

  平行:①同一平面內,不相交的兩條直線叫做平行線。

  ②經過直線外一點,有且只有一條直線與這條直線平行。

  ③如果兩條直線都與第3條直線平行,那麼這兩條直線互相平行。垂直:①如果兩條直線相交成直角,那麼這兩條直線互相垂直。

  ②互相垂直的兩條直線的交點叫做垂足。

  ③平面內,過一點有且只有一條直線與已知直線垂直。垂直平分線:垂直和平分一條線段的直線叫垂直平分線。

  垂直平分線垂直平分的一定是線段,不能是射線或直線,這根據射線和直線可以無限延長有關,再看後面的,垂直平分線是一條直線,所以在畫垂直平分線的時候,確定了2點後(關於畫法,後面會講)一定要把線段穿出2點。

  垂直平分線定理:

  性質定理:在垂直平分線上的點到該線段兩端點的距離相等;判定定理:到線段2端點距離相等的點在這線段的垂直平分線上角平分線:把一個角平分的射線叫該角的角平分線。

  定義中有幾個要點要注意一下的,就是角的角平分線是一條射線,不是線段也不是直線,很多時,在題目中會出

  現直線,這是角平分線的對稱軸才會用直線的,這也涉及到軌跡的問題,一個角個角平分線就是到角兩邊距離相等的點

  性質定理:角平分線上的點到該角兩邊的距離相等

  判定定理:到角的兩邊距離相等的點在該角的角平分線上正方形:一組鄰邊相等的矩形是正方形

  性質:正方形具有平行四邊形、菱形、矩形的一切性質判定:1、對角線相等的菱形2、鄰邊相等的矩形

  二、基本定理

  1、過兩點有且只有一條直線2、兩點之間線段最短

  3、同角或等角的補角相等4、同角或等角的餘角相等

  5、過一點有且只有一條直線和已知直線垂直

  6、直線外一點與直線上各點連線的所有線段中,垂線段最短

  7、平行公理經過直線外一點,有且只有一條直線與這條直線平行8、如果兩條直線都和第三條直線平行,這兩條直線也互相平行9、同位角相等,兩直線平行10、內錯角相等,兩直線平行11、同旁內角互補,兩直線平行12、兩直線平行,同位角相等13、兩直線平行,內錯角相等14、兩直線平行,同旁內角互補

  15、定理三角形兩邊的和大於第三邊16、推論三角形兩邊的差小於第三邊

  17、三角形內角和定理三角形三個內角的和等於180°18、推論1直角三角形的兩個銳角互餘

  19、推論2三角形的一個外角等於和它不相鄰的兩個內角的和20、推論3三角形的一個外角大於任何一個和它不相鄰的內角21、全等三角形的對應邊、對應角相等

  22、邊角邊公理(SAS)有兩邊和它們的夾角對應相等的兩個三角形全等23、角邊角公理(ASA)有兩角和它們的夾邊對應相等的兩個三角形全等24、推論(AAS)有兩角和其中一角的對邊對應相等的兩個三角形全等25、邊邊邊公理(SSS)有三邊對應相等的兩個三角形全等

  26、斜邊、直角邊公理(HL)有斜邊和一條直角邊對應相等的兩個直角三角形全等27、定理1在角的平分線上的點到這個角的兩邊的距離相等

  28、定理2到一個角的兩邊的距離相同的點,在這個角的平分線上29、角的平分線是到角的兩邊距離相等的所有點的集合

  30、等腰三角形的性質定理等腰三角形的兩個底角相等(即等邊對等角)31、推論1等腰三角形頂角的平分線平分底邊並且垂直於底邊

  32、等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合33、推論3等邊三角形的各角都相等,並且每一個角都等於60°

  34、等腰三角形的判定定理如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等(等角對等邊)35、推論1三個角都相等的三角形是等邊三角形

  36、推論2有一個角等於60°的等腰三角形是等邊三角形

  37、在直角三角形中,如果一個銳角等於30°那麼它所對的直角邊等於斜邊的一半38、直角三角形斜邊上的中線等於斜邊上的一半

  5

  39、定理線段垂直平分線上的點和這條線段兩個端點的距離相等

  40、逆定理和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上41、線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合42、定理1關於某條直線對稱的兩個圖形是全等形

  43、定理2如果兩個圖形關於某直線對稱,那麼對稱軸是對應點連線的垂直平分線

  44、定理3兩個圖形關於某直線對稱,如果它們的對應線段或延長線相交,那麼交點在對稱軸上45、逆定理如果兩個圖形的對應點連線被同一條直線垂直平分,那麼這兩個圖形關於這條直線對稱46、勾股定理直角三角形兩直角邊a、b的平方和、等於斜邊c的平方,即a2+b2=c2

  47、勾股定理的逆定理如果三角形的三邊長a、b、c有關係a2+b2=c2,那麼這個三角形是直角三角形48、定理四邊形的內角和等於360°49、四邊形的外角和等於360°

  50、多邊形內角和定理n邊形的內角的和等於(n-2)×180°51、推論任意多邊的外角和等於360°

  52、平行四邊形性質定理1平行四邊形的對角相等53、平行四邊形性質定理2平行四邊形的對邊相等54、推論夾在兩條平行線間的平行線段相等

  55、平行四邊形性質定理3平行四邊形的對角線互相平分

  56、平行四邊形判定定理1兩組對角分別相等的四邊形是平行四邊形57、平行四邊形判定定理2兩組對邊分別相等的四邊形是平行四邊形58、平行四邊形判定定理3對角線互相平分的四邊形是平行四邊形59、平行四邊形判定定理4一組對邊平行相等的四邊形是平行四邊形60、矩形性質定理1矩形的四個角都是直角61、矩形性質定理2矩形的對角線相等

  62、矩形判定定理1有三個角是直角的四邊形是矩形63、矩形判定定理2對角線相等的平行四邊形是矩形64、菱形性質定理1菱形的四條邊都相等

  65、菱形性質定理2菱形的對角線互相垂直,並且每一條對角線平分一組對角66、菱形面積=對角線乘積的一半,即S=(a×b)÷267、菱形判定定理1四邊都相等的四邊形是菱形

  68、菱形判定定理2對角線互相垂直的平行四邊形是菱形

  69、正方形性質定理1正方形的四個角都是直角,四條邊都相等

  70、正方形性質定理2正方形的兩條對角線相等,並且互相垂直平分,每條對角線平分一組對角71、定理1關於中心對稱的兩個圖形是全等的

  72、定理2關於中心對稱的兩個圖形,對稱點連線都經過對稱中心,並且被對稱中心平分

  73、逆定理如果兩個圖形的對應點連線都經過某一點,並且被這一點平分,那麼這兩個圖形關於這一點對稱74、等腰梯形性質定理等腰梯形在同一底上的'兩個角相等75、等腰梯形的兩條對角線相等

  76、等腰梯形判定定理在同一底上的兩個角相等的梯形是等腰梯形77、對角線相等的梯形是等腰梯形

  78、平行線等分線段定理如果一組平行線在一條直線上截得的線段相等,那麼在其他直線上截得的線段也相等79、推論1經過梯形一腰的中點與底平行的直線,必平分另一腰

  80、推論2經過三角形一邊的中點與另一邊平行的直線,必平分第三邊81、三角形中位線定理三角形的中位線平行於第三邊,並且等於它的一半

  82、梯形中位線定理梯形的中位線平行於兩底,並且等於兩底和的一半L=(a+b)÷2S=L×h83、(1)比例的基本性質:如果a:b=c:d,那麼ad=bc如果ad=bc,那麼a:b=c:d84、(2)合比性質:如果a/b=c/d,那麼(a±b)/b=(c±d)/d85、(3)等比性質:如果a/b=c/d==m/n(b+d++n≠0),

  那麼(a+c++m)/(b+d++n)=a/b

  86、平行線分線段成比例定理三條平行線截兩條直線,所得的對應線段成比例87、推論平行於三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例

  88、定理如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那麼這條直線平行於三角形的第三邊

  89、平行於三角形的一邊,並且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應成比例90、定理平行於三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似91、相似三角形判定定理1兩角對應相等,兩三角形相似(ASA)92、直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似93、判定定理2兩邊對應成比例且夾角相等,兩三角形相似(SAS)94、判定定理3三邊對應成比例,兩三角形相似(SSS)95、定理如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應成比例,那麼這兩個直角三角形相似

  96、性質定理1相似三角形對應高的比,對應中線的比與對應角平分線的比都等於相似比97、性質定理2相似三角形周長的比等於相似比

  98、性質定理3相似三角形面積的比等於相似比的平方

  99、任意銳角的正弦值等於它的餘角的餘弦值,任意銳角的餘弦值等於它的餘角的正弦值100、任意銳角的正切值等於它的餘角的餘切值,任意銳角的餘切值等於它的餘角的正切值101、圓是定點的距離等於定長的點的集合

  102、圓的內部可以看作是圓心的距離小於半徑的點的集合103、圓的外部可以看作是圓心的距離大於半徑的點的集合104、同圓或等圓的半徑相等

  105、到定點的距離等於定長的點的軌跡,是以定點為圓心,定長為半徑的圓106、和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直平分線107、到已知角的兩邊距離相等的點的軌跡,是這個角的平分線

  108、到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距離相等的一條直線109、定理不在同一直線上的三點確定一個圓。

  110、垂徑定理垂直於弦的直徑平分這條弦並且平分弦所對的兩條弧111、推論1

  ①平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對的兩條弧②弦的垂直平分線經過圓心,並且平分弦所對的兩條弧

  ③平分弦所對的一條弧的直徑,垂直平分弦,並且平分弦所對的另一條弧112、推論2圓的兩條平行弦所夾的弧相等113、圓是以圓心為對稱中心的中心對稱圖形

  114、定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等

  115、推論在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那麼它們所對應的其餘各組量都相等

  116、定理一條弧所對的圓周角等於它所對的圓心角的一半

  117、推論1同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等118、推論2半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑

  119、推論3如果三角形一邊上的中線等於這邊的一半,那麼這個三角形是直角三角形120、定理圓的內接四邊形的對角互補,並且任何一個外角都等於它的內對角121、①直線L和⊙O相交dr②直線L和⊙O相切d=r③直線L和⊙O相離dr

  122、切線的判定定理經過半徑的外端並且垂直於這條半徑的直線是圓的切線123、切線的性質定理圓的切線垂直於經過切點的半徑

  124、推論1經過圓心且垂直於切線的直線必經過切點125、推論2經過切點且垂直於切線的直線必經過圓心

  126、切線長定理從圓外一點引圓的兩條切線,它們的切線長相等圓心和這一點的連線平分兩條切線的夾角127、圓的外切四邊形的兩組對邊的和相等

  128、弦切角定理弦切角等於它所夾的弧對的圓周角

  129、推論如果兩個弦切角所夾的弧相等,那麼這兩個弦切角也相等130、相交弦定理圓內的兩條相交弦,被交點分成的兩條線段長的積相等

  131、推論如果弦與直徑垂直相交,那麼弦的一半是它分直徑所成的兩條線段的比例中項

  132、切割線定理從圓外一點引圓的切線和割線,切線長是這點到割線與圓交點的兩條線段長的比例中項133、推論從圓外一點引圓的兩條割線,這一點到每條割線與圓的交點的兩條線段長的積相等134、如果兩個圓相切,那麼切點一定在連心線上

  135、①兩圓外離dR+r②兩圓外切d=R+r③兩圓相交R-rdR+r(Rr)

  ④兩圓內切d=R-r(Rr)⑤兩圓內含dR-r(Rr)136、定理相交兩圓的連心線垂直平分兩圓的公共弦137、定理把圓分成n(n≥3):

  ⑴依次連結各分點所得的多邊形是這個圓的內接正n邊形

  ⑵經過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形138、定理任何正多邊形都有一個外接圓和一個內切圓,這兩個圓是同心圓139、正n邊形的每個內角都等於(n-2)×180°/n

  140、定理正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形141、正n邊形的面積Sn=pnrn/2p表示正n邊形的周長142、正三角形面積√3a/4a表示邊長

  143、如果在一個頂點周圍有k個正n邊形的角,由於這些角的和應為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4

  144、弧長計算公式:L=n兀R/180

  145、扇形面積公式:S扇形=n兀R^2/360=LR/2146、內公切線長=d-(R-r)外公切線長=d-(R+r)

  一、常用數學公式

  公式分類公式表示式乘法與因式分解a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)

  三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b|

  |a|≤b-b≤a≤b|a-b|≥|a|-|b|-|a|≤a≤|a|

  一元二次方程的解-b+√(b2-4ac)/2a-b-√(b2-4ac)/2a

  根與係數的關係X1+X2=-b/aX1*X2=c/a注:韋達定理判別式

  b2-4ac=0注:方程有兩個相等的實根b2-4ac>0注:方程有兩個不等的實根

  b2-4ac歸謬是反證法的關鍵,匯出矛盾的過程沒有固定的模式,但必須從反設出發,否則推導將成為無源之水,無本之木。推理必須嚴謹。匯出的矛盾有如下幾種型別:與已知條件矛盾;與已知的公理、定義、定理、公式矛盾;與反設矛盾;自相矛盾。8、面積法

  平面幾何中講的面積公式以及由面積公式推出的與面積計算有關的性質定理,不僅可用於計算面積,而且用它來證明平面幾何題有時會收到事半功倍的效果。運用面積關係來證明或計算平面幾何題的方法,稱為面積方法,它是幾何中的一種常用方法。

  用歸納法或分析法證明平面幾何題,其困難在添置輔助線。面積法的特點是把已知和未知各量用面積公式聯絡起來,透過運算達到求證的結果。所以用面積法來解幾何題,幾何元素之間關係變成數量之間的關係,只需要計算,有時可以不添置補助線,即使需要添置輔助線,也很容易考慮到。9、幾何變換法

  在數學問題的研究中,常常運用變換法,把複雜性問題轉化為簡單性的問題而得到解決。所謂變換是一個集合的任一元素到同一集合的元素的一個一一對映。中學數學中所涉及的變換主要是初等變換。有一些看來很難甚至於無法下手的習題,可以藉助幾何變換法,化繁為簡,化難為易。另一方面,也可將變換的觀點滲透到中學數學教學中。將圖形從相等靜止條件下的研究和運動中的研究結合起來,有利於對圖形本質的認識。幾何變換包括:(1)平移;(2)旋轉;(3)對稱。10、客觀性題的解題方法

  選擇題是給出條件和結論,要求根據一定的關係找出正確答案的一類題型。選擇題的題型構思精巧,形式靈活,可以比較全面地考察學生的基礎知識和基本技能,從而增大了試卷的容量和知識覆蓋面。

  填空題是標準化考試的重要題型之一,它同選擇題一樣具有考查目標明確,知識覆蓋面廣,評卷準確迅速,有利於考查學生的分析判斷能力和計算能力等優點,不同的是填空題未給出答案,可以防止學生猜估答案的情況。要想迅速、正確地解選擇題、填空題,除了具有準確的計算、嚴密的推理外,還要有解選擇題、填空題的方法與技巧。下面透過例項介紹常用方法。

  (1)直接推演法:直接從命題給出的條件出發,運用概念、公式、定理等進行推理或運算,得出結論,選擇正確答案,這就是傳統的解題方法,這種解法叫直接推演法。

  (2)驗證法:由題設找出合適的驗證條件,再透過驗證,找出正確答案,亦可將供選擇的答案代入條件中去驗證,找出正確答案,此法稱為驗證法(也稱代入法)。當遇到定量命題時,常用此法。

  (3)特殊元素法:用合適的特殊元素(如數或圖形)代入題設條件或結論中去,從而獲得解答。這種方法叫特殊元素法。

  (4)排除、篩選法:對於正確答案有且只有一個的選擇題,根據數學知識或推理、演算,把不正確的結論排除,餘下的結論再經篩選,從而作出正確的結論的解法叫排除、篩選法。

  (5)圖解法:藉助於符合題設條件的圖形或圖象的性質、特點來判斷,作出正確的選擇稱為圖解法。圖解法是解選擇題常用方法之一。

  (6)分析法:直接透過對選擇題的條件和結論,作詳盡的分析、歸納和判斷,從而選出正確的結果,為分析法。

初中數學定理公式知識點總結2

  1過兩點有且只有一條直線2兩點之間線段最短3同角或等角的補角相等4同角或等角的餘角相等

  5過一點有且只有一條直線和已知直線垂直

  6直線外一點與直線上各點連線的所有線段中,垂線段最短7平行公理經過直線外一點,有且只有一條直線與這條直線平行8如果兩條直線都和第三條直線平行,這兩條直線也互相平行15定理三角形兩邊的和大於第三邊16推論三角形兩邊的差小於第三邊

  17三角形內角和定理三角形三個內角的和等於180°18推論1直角三角形的兩個銳角互餘

  19推論2三角形的一個外角等於和它不相鄰的兩個內角的和20推論3三角形的一個外角大於任何一個和它不相鄰的內角21全等三角形的對應邊、對應角相等

  22邊角邊公理(SAS)有兩邊和它們的夾角對應相等的兩個三角形全等23角邊角公理(ASA)有兩角和它們的夾邊對應相等的兩個三角形全等24推論(AAS)有兩角和其中一角的對邊對應相等的兩個三角形全等25邊邊邊公理(SSS)有三邊對應相等的兩個三角形全等

  26斜邊、直角邊公理(HL)有斜邊和一條直角邊對應相等的兩個直角三角形全等27定理1在角的平分線上的點到這個角的兩邊的距離相等28定理2到一個角的兩邊的距離相同的點,在這個角的平分線上29角的平分線是到角的兩邊距離相等的所有點的集合

  30等腰三角形的性質定理等腰三角形的兩個底角相等(即等邊對等角)31推論1等腰三角形頂角的平分線平分底邊並且垂直於底邊32等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合33推論3等邊三角形的各角都相等,並且每一個角都等於60°

  34等腰三角形的判定定理如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等(等角對等邊)

  35推論1三個角都相等的三角形是等邊三角形36推論2有一個角等於60°的等腰三角形是等邊三角形

  37在直角三角形中,如果一個銳角等於30°那麼它所對的直角邊等於斜邊的一半38直角三角形斜邊上的中線等於斜邊上的一半

  39定理線段垂直平分線上的點和這條線段兩個端點的距離相等

  40逆定理和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上

  41線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合42定理1關於某條直線對稱的兩個圖形是全等形

  43定理2如果兩個圖形關於某直線對稱,那麼對稱軸是對應點連線的垂直平分線44定理3兩個圖形關於某直線對稱,如果它們的對應線段或延長線相交,那麼交點在對稱軸上

  45逆定理如果兩個圖形的對應點連線被同一條直線垂直平分,那麼這兩個圖形關於這條直線對稱

  46勾股定理直角三角形兩直角邊a、b的平方和、等於斜邊c的平方,即a2+b2=c2

  47勾股定理的逆定理如果三角形的三邊長a、b、c有關係a2+b2=c2,那麼這個三角形是直角三角形

  48定理四邊形的內角和等於360°49四邊形的外角和等於360°

  50多邊形內角和定理n邊形的內角的和等於(n-2)×180°51推論任意多邊的外角和等於360°

  52平行四邊形性質定理1平行四邊形的對角相等53平行四邊形性質定理2平行四邊形的對邊相等54推論夾在兩條平行線間的平行線段相等

  55平行四邊形性質定理3平行四邊形的對角線互相平分

  56平行四邊形判定定理1兩組對角分別相等的四邊形是平行四邊形57平行四邊形判定定理2兩組對邊分別相等的四邊形是平行四邊形58平行四邊形判定定理3對角線互相平分的四邊形是平行四邊形59平行四邊形判定定理4一組對邊平行相等的四邊形是平行四邊形60矩形性質定理1矩形的四個角都是直角61矩形性質定理2矩形的對角線相等

  62矩形判定定理1有三個角是直角的四邊形是矩形63矩形判定定理2對角線相等的平行四邊形是矩形64菱形性質定理1菱形的四條邊都相等

  65菱形性質定理2菱形的對角線互相垂直,並且每一條對角線平分一組對角66菱形面積=對角線乘積的一半,即S=(a×b)÷267菱形判定定理1四邊都相等的四邊形是菱形68菱形判定定理2對角線互相垂直的平行四邊形是菱形69正方形性質定理1正方形的四個角都是直角,四條邊都相等

  70正方形性質定理2正方形的兩條對角線相等,並且互相垂直平分,每條對角線平分一組對角

  71定理1關於中心對稱的兩個圖形是全等的

  72定理2關於中心對稱的兩個圖形,對稱點連線都經過對稱中心,並且被對稱中心平分

  73逆定理如果兩個圖形的對應點連線都經過某一點,並且被這一點平分,那麼這兩個圖形關於這一點對稱

  74等腰梯形性質定理等腰梯形在同一底上的兩個角相等75等腰梯形的兩條對角線相等

  76等腰梯形判定定理在同一底上的兩個角相等的梯形是等腰梯形77對角線相等的梯形是等腰梯形

  78平行線等分線段定理如果一組平行線在一條直線上截得的線段相等,那麼在其他直線上截得的線段也相等

  79推論1經過梯形一腰的中點與底平行的直線,必平分另一腰80推論2經過三角形一邊的中點與另一邊平行的直線,必平分第三邊81三角形中位線定理三角形的中位線平行於第三邊,並且等於它的一半82梯形中位線定理梯形的中位線平行於兩底,並且等於兩底和的一半

  L=(a+b)÷2S=L×h

  83(1)比例的基本性質如果a:b=c:d,那麼ad=bc,如果ad=bc,那麼a:b=c:d84(2)合比性質如果a/b=c/d,那麼(a±b)/b=(c±d)/d85(3)等比性質如果a/b=c/d=…=m/n(b+d+…+n≠0),

  那麼(a+c+…+m)/(b+d+…+n)=a/b

  86平行線分線段成比例定理三條平行線截兩條直線,所得的對應線段成比例

  87推論平行於三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例88定理如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那麼這條直線平行於三角形的第三邊

  89平行於三角形的一邊,並且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應成比例

  90定理平行於三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似

  91相似三角形判定定理1兩角對應相等,兩三角形相似(ASA)92直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似93判定定理2兩邊對應成比例且夾角相等,兩三角形相似(SAS)94判定定理3三邊對應成比例,兩三角形相似(SSS)

  95定理如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應成比例,那麼這兩個直角三角形相似

  96性質定理1相似三角形對應高的比,對應中線的比與對應角平分線的比都等於相似比97性質定理2相似三角形周長的比等於相似比98性質定理3相似三角形面積的比等於相似比的平方

  99任意銳角的正弦值等於它的餘角的餘弦值,任意銳角的餘弦值等於它的餘角的正弦值100任意銳角的正切值等於它的餘角的餘切值,任意銳角的餘切值等於它的餘角的正切值

  101圓是定點的距離等於定長的點的集合

  102圓的內部可以看作是圓心的距離小於半徑的點的集合103圓的外部可以看作是圓心的距離大於半徑的點的集合104同圓或等圓的半徑相等

  105到定點的距離等於定長的點的軌跡,是以定點為圓心,定長為半徑的圓106和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直平分線107到已知角的兩邊距離相等的點的軌跡,是這個角的平分線

  108到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距離相等的一條直線109定理不在同一直線上的三點確定一個圓。

  110垂徑定理垂直於弦的直徑平分這條弦並且平分弦所對的兩條弧

  111推論1①平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對的兩條弧

  ②弦的垂直平分線經過圓心,並且平分弦所對的兩條弧

  ③平分弦所對的一條弧的直徑,垂直平分弦,並且平分弦所對的另一條弧

  112推論2圓的兩條平行弦所夾的弧相等113圓是以圓心為對稱中心的中心對稱圖形

  114定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等

  115推論在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那麼它們所對應的其餘各組量都相等

  116定理一條弧所對的圓周角等於它所對的圓心角的一半

  117推論1同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等118推論2半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑119推論3如果三角形一邊上的中線等於這邊的一半,那麼這個三角形是直角三角形120定理圓的內接四邊形的對角互補,並且任何一個外角都等於它的內對角121①直線L和⊙O相交d<r②直線L和⊙O相切d=r③直線L和⊙O相離d>r122切線的判定定理經過半徑的外端並且垂直於這條半徑的直線是圓的切線123切線的性質定理圓的切線垂直於經過切點的半徑124推論1經過圓心且垂直於切線的直線必經過切點125推論2經過切點且垂直於切線的直線必經過圓心

  126切線長定理從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角

  127圓的外切四邊形的兩組對邊的和相等128弦切角定理弦切角等於它所夾的弧對的圓周角

  129推論如果兩個弦切角所夾的弧相等,那麼這兩個弦切角也相等130相交弦定理圓內的兩條相交弦,被交點分成的兩條線段長的積相等

  131推論如果弦與直徑垂直相交,那麼弦的一半是它分直徑所成的兩條線段的比例中項132切割線定理從圓外一點引圓的切線和割線,切線長是這點到割線與圓交點的兩條線段長的比例中項

  133推論從圓外一點引圓的兩條割線,這一點到每條割線與圓的交點的兩條線段長的積相等

  134如果兩個圓相切,那麼切點一定在連心線上135①兩圓外離d>R+r

  ②兩圓外切d=R+r

  ③兩圓相交R-r<d<R+r(R>r)④兩圓內切d=R-r(R>r)⑤兩圓內含d<R-r(R>r)

  136定理相交兩圓的連心線垂直平分兩圓的公共弦137定理把圓分成n(n≥3):

  ⑴依次連結各分點所得的多邊形是這個圓的內接正n邊形

  ⑵經過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形138定理任何正多邊形都有一個外接圓和一個內切圓,這兩個圓是同心圓

  (n2)180139正n邊形的每個內角都等於

  n140定理正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形

  pnrn141正n邊形的面積Sn=p表示正n邊形的周長

  2142正三角形面積

  32aa表示邊長4143如果在一個頂點周圍有k個正n邊形的角,由於這些角的和應為360°,

  k(n2)180360化為(n-2)(k-2)=4因此

  n144弧長計算公式:L=

  nR180nR2LR145扇形面積公式:S扇形==

  3602146內公切線長=d-(R-r)外公切線長=d-(R+r)

  公式分類及公式表示式

  乘法與因式分:a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)三角不等式:|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b-b≤a≤b|a-b|≥|a|-|b|-|a|≤a≤|a|

  一元二次方程的解

  bb24ac2a

  根與係數的關係:X1+X2=-b/aX1*X2=c/a注:韋達定理判別式

  b2-4ac=0注:方程有兩個相等的實根b2-4ac>0注:方程有兩個不等的實根b2-4ac

初中數學定理公式知識點總結3

  1過兩點有且只有一條直線

  2兩點之間線段最短

  3同角或等角的補角相等

  4同角或等角的餘角相等

  5過一點有且只有一條直線和已知直線垂直

  6直線外一點與直線上各點連線的所有線段中,垂線段最短

  7平行公理經過直線外一點,有且只有一條直線與這條直線平行

  8如果兩條直線都和第三條直線平行,這兩條直線也互相平行

  9同位角相等,兩直線平行

  10內錯角相等,兩直線平行

  11同旁內角互補,兩直線平行

  12兩直線平行,同位角相等

  13兩直線平行,內錯角相等

  14兩直線平行,同旁內角互補

  15定理三角形兩邊的和大於第三邊

  16推論三角形兩邊的差小於第三邊

  17三角形內角和定理三角形三個內角的和等於180°

  18推論1直角三角形的兩個銳角互餘

  19推論2三角形的一個外角等於和它不相鄰的兩個內角的和

  20推論3三角形的一個外角大於任何一個和它不相鄰的內角

  21全等三角形的對應邊、對應角相等

  22邊角邊公理有兩邊和它們的夾角對應相等的兩個三角形全等

  23角邊角公理有兩角和它們的夾邊對應相等的兩個三角形全等

  24推論有兩角和其中一角的對邊對應相等的兩個三角形全等

  25邊邊邊公理有三邊對應相等的兩個三角形全等

  26斜邊、直角邊公理有斜邊和一條直角邊對應相等的兩個直角三角形全等

  27定理1在角的平分線上的點到這個角的兩邊的距離相等

  28定理2到一個角的兩邊的距離相同的點,在這個角的平分線上

  29角的平分線是到角的兩邊距離相等的所有點的集合

  30等腰三角形的性質定理等腰三角形的兩個底角相等

  31推論1等腰三角形頂角的平分線平分底邊並且垂直於底邊

  32等腰三角形的頂角平分線、底邊上的中線和高互相重合

  33推論3等邊三角形的各角都相等,並且每一個角都等於60°

  34等腰三角形的判定定理如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等(等角對等邊)

  35推論1三個角都相等的三角形是等邊三角形

  36推論2有一個角等於60°的等腰三角形是等邊三角形

  37在直角三角形中,如果一個銳角等於30°那麼它所對的直角邊等於斜邊的一半

  38直角三角形斜邊上的中線等於斜邊上的一半

  39定理線段垂直平分線上的點和這條線段兩個端點的距離相等

  40逆定理和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上

  41線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合

  42定理1關於某條直線對稱的兩個圖形是全等形

  43定理2如果兩個圖形關於某直線對稱,那麼對稱軸是對應點連線的垂直平分線

  44定理3兩個圖形關於某直線對稱,如果它們的對應線段或延長線相交,那麼交點在對稱軸上

  45逆定理如果兩個圖形的對應點連線被同一條直線垂直平分,那麼這兩個圖形關於這條直線對稱

  46勾股定理直角三角形兩直角邊a、b的平方和、等於斜邊c的平方,即a+b=c

  47勾股定理的逆定理如果三角形的三邊長a、b、c有關係a+b=c,那麼這個三角形是直角三角形

  48定理四邊形的內角和等於360°49四邊形的外角和等於360°

  50多邊形內角和定理n邊形的內角的和等於(n-2)×180°

  51推論任意多邊的外角和等於360°

  52平行四邊形性質定理1平行四邊形的對角相等

  53平行四邊形性質定理2平行四邊形的對邊相等

  54推論夾在兩條平行線間的平行線段相等

  55平行四邊形性質定理3平行四邊形的對角線互相平分

  56平行四邊形判定定理1兩組對角分別相等的四邊形是平行四邊形

  57平行四邊形判定定理2兩組對邊分別相等的四邊形是平行四邊形

  58平行四邊形判定定理3對角線互相平分的四邊形是平行四邊形

  59平行四邊形判定定理4一組對邊平行相等的四邊形是平行四邊形

  60矩形性質定理1矩形的四個角都是直角

  61矩形性質定理2矩形的對角線相等

  62矩形判定定理1有三個角是直角的四邊形是矩形

  63矩形判定定理2對角線相等的平行四邊形是矩形

  64菱形性質定理1菱形的四條邊都相等

  65菱形性質定理2菱形的對角線互相垂直,並且每一條對角線平分一組對角

  66菱形面積=對角線乘積的一半,即S=(a×b)÷267菱形判定定理1四邊都相等的四邊形是菱形

  68菱形判定定理2對角線互相垂直的平行四邊形是菱形

  69正方形性質定理1正方形的四個角都是直角,四條邊都相等

  70正方形性質定理2正方形的兩條對角線相等,並且互相垂直平分,每條對角線平分一組對角

  71定理1關於中心對稱的兩個圖形是全等的

  72定理2關於中心對稱的兩個圖形,對稱點連線都經過對稱中心,並且被對稱中心平分

  73逆定理如果兩個圖形的對應點連線都經過某一點,並且被這一點平分,那麼這兩個圖形關於這一點對稱

  74等腰梯形性質定理等腰梯形在同一底上的兩個角相等75等腰梯形的兩條對角線相等

  76等腰梯形判定定理在同一底上的兩個角相等的梯形是等腰梯形

  77對角線相等的梯形是等腰梯形

  78平行線等分線段定理如果一組平行線在一條直線上截得的線段相等,那麼在其他直線上截得的線段也相等

  79推論1經過梯形一腰的中點與底平行的直線,必平分另一腰

  80推論2經過三角形一邊的中點與另一邊平行的直線,必平分第三邊

  81三角形中位線定理三角形的中位線平行於第三邊,並且等於它的一半

  82梯形中位線定理梯形的中位線平行於兩底,並且等於兩底和的一半L=(a+b)÷2S=L×h

  83(1)比例的基本性質如果a:b=c:d,那麼ad=bc如果ad=bc,那麼a:b=c:d

  84(2)合比性質如果a/b=c/d,那麼(a±b)/b=(c±d)/d85(3)等比性質如果a/b=c/d=…=m/n(b+d+…+n≠0),那麼(a+c+…+m)/(b+d+…+n)=a/b

  86平行線分線段成比例定理三條平行線截兩條直線,所得的對應線段成比例

  87推論平行於三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例

  88定理如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那麼這條直線平行於三角形的第三邊

  89平行於三角形的一邊,並且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應成比例

  90定理平行於三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似

  91相似三角形判定定理1兩角對應相等,兩三角形相似(ASA)

  92直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似

  93判定定理2兩邊對應成比例且夾角相等,兩三角形相似(SAS)

  94判定定理3三邊對應成比例,兩三角形相似(SSS)

  95定理如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應成比例,那麼這兩個直角三角形相似

  96性質定理1相似三角形對應高的比,對應中線的比與對應角平分線的比都等於相似比

  97性質定理2相似三角形周長的比等於相似比

  98性質定理3相似三角形面積的比等於相似比的平方

  99任意銳角的正弦值等於它的餘角的餘弦值,任意銳角的餘弦值等於它的餘角的正弦值

  100任意銳角的正切值等於它的餘角的餘切值,任意銳角的餘切值等於它的餘角的正切值

  101圓是定點的距離等於定長的點的集合

  102圓的內部可以看作是圓心的距離小於半徑的點的集合

  103圓的外部可以看作是圓心的距離大於半徑的點的集合

  104同圓或等圓的半徑相等

  105到定點的距離等於定長的點的軌跡,是以定點為圓心,定長為半徑的圓

  106和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直平分線

  107到已知角的兩邊距離相等的點的軌跡,是這個角的平分線

  108到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距離相等的一條直線109定理不在同一直線上的三個點確定一條直線

  110垂徑定理垂直於弦的直徑平分這條弦並且平分弦所對的兩條弧

  111推論

  1①平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對的兩條弧

  ②弦的垂直平分線經過圓心,並且平分弦所對的兩條弧

  ③平分弦所對的一條弧的直徑,垂直平分弦,並且平分弦所對的另一條弧

  112推論2圓的兩條平行弦所夾的弧相等

  113圓是以圓心為對稱中心的中心對稱圖形

  114定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等

  115推論在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那麼它們所對應的其餘各組量都相等

  116定理一條弧所對的圓周角等於它所對的圓心角的一半

  117推論1同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等

  118推論2半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑

  119推論3如果三角形一邊上的中線等於這邊的一半,那麼這個三角形是直角三角形

  120定理圓的內接四邊形的對角互補,並且任何一個外角都等於它的內對角

  121①直線L和⊙O相交d<r②直線L和⊙O相切d=r③直線L和⊙O相離d>r

  122切線的判定定理經過半徑的外端並且垂直於這條半徑的直線是圓的切線

  123切線的性質定理圓的切線垂直於經過切點的半徑

  124推論1經過圓心且垂直於切線的直線必經過切點

  125推論2經過切點且垂直於切線的直線必經過圓心

  126切線長定理從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角

  127圓的外切四邊形的兩組對邊的和相等

  128弦切角定理弦切角等於它所夾的弧對的圓周角

  129推論如果兩個弦切角所夾的弧相等,那麼這兩個弦切角也相等

  130相交弦定理圓內的兩條相交弦,被交點分成的兩條線段長的積相等

  131推論如果弦與直徑垂直相交,那麼弦的一半是它分直徑所成的兩條線段的比例中項

  132切割線定理從圓外一點引圓的切線和割線,切線長是這點到割線與圓交點的兩條線段長的比例中項

  133推論從圓外一點引圓的兩條割線,這一點到每條割線與圓的交點的兩條線段長的積相等

  134如果兩個圓相切,那麼切點一定在連心線上

  135①兩圓外離d>R+r②兩圓外切d=R+r③兩圓相交R-r<d<R+r(R>r)

  ④兩圓內切d=R-r(R>r)⑤兩圓內含d<R-r(R>r)

  136定理相交兩圓的連心線垂直平分兩圓的公共弦

  137定理把圓分成n(n≥3):

  ⑴依次連結各分點所得的多邊形是這個圓的內接正n邊形

  ⑵經過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形

  138定理任何正多邊形都有一個外接圓和一個內切圓,這兩個圓是同心圓

  139正n邊形的每個內角都等於(n-2)×180°/n

  140定理正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形

  141正n邊形的面積Sn=pnrn/2p表示正n邊形的周長

  142正三角形面積√3a/4a表示邊長

  143如果在一個頂點周圍有k個正n邊形的角,由於這些角的和應為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4

  144弧長計算公式:L=n∏R/180

  145扇形面積公式:S扇形=n∏R/360=LR/2146內公切線長=d-(R-r)外公切線長=d-(R+r)