2017高考數學第二輪複習計劃書範文
數學是研究數量、結構、變化、空間以及資訊等概念的一門學科,從某種角度看屬於形式科學的一種。下面小編為大家帶來的是2017高考數學第二輪複習計劃書範文,歡迎閱讀參考!
2017高考數學第二輪複習計劃書範文(一)
2017高三二輪複習計劃—2月17日~4月27日:專題複習;4月28日~5月18日;綜合演練;5月19日~5月31日:自由複習。
專題一:集合、函式、導數與不等式。此專題函式和導數以及應用導數知識解決函式問題是重點,特別要注重交匯問題的訓練。每年高考中導數所佔的比重都非常大,一般情況是在客觀題中考查導數的幾何意義和導數的計算,屬於容易題;二是在解答題中進行綜合考查,主要考查用導數研究函式的性質,用函式的單調性證明不等式等,此題具有很高的綜合性,並且與思想方法緊密結合。
專題二:數列、推理與證明。數列由舊高考中的壓軸題變成了新高考中的中檔題,主要考查等差等比數列的通項與求和,與不等式的簡單綜合問題是近年來的熱門問題。
專題三:三角函式、平面向量和解三角形。平面向量和三角函式的影象與性質、恆等變換是重點。近幾年高考中三角函式內容的難度和比重有所降低,但仍保留一個選擇題、一個填空題和一個解答題的題量,難度都不大,但是解三角形的內容應用性較強,將解三角形的知識與實際問題結合起來將是今後命題的一個熱點。平面向量具有幾何與代數形式的“雙重性”,是一個重要的知識交匯點,它與三角函式、解析幾何都可以整合。
專題四:立體幾何。注重幾何體的三檢視、空間點線面的關係及空間角的計算,用空間向量解決點線面的問題是重點。
專題五:解析幾何。直線與圓錐曲線的位置關係、軌跡方程的探求以及最值範圍、定點定值、對稱問題是命題的主旋律。近幾年高考中圓錐曲線問題具有兩大特色:一是融“綜合性、開放性、探索性”為一體;二是向量關係的引入、三角變換的滲透和導數工具的使用。我們在注重基礎的同時,要兼顧直線與圓錐曲線綜合問題的強化訓練,尤其是推理、運算變形能力的訓練。
專題六:機率與統計、演算法與複數。要求具有較高的閱讀理解和分析問題、解決問題的能力。高考對演算法的考查集中在程式框圖,主要透過數列求和、求積設計問題。
專題七:系列4選講。包括幾何、極座標與引數方程、不等式選講
2017高考數學第二輪複習計劃書範文(二)
專題一:函式與不等式,以函式為主線,不等式和函式綜合題型是考點
函式的性質:著重掌握函式的單調性,奇偶性,週期性,對稱性。這些性質通常會綜合起來一起考察,並且有時會考察具體函式的這些性質,有時會考察抽象函式的這些性質。
一元二次函式:一元二次函式是貫穿中學階段的一大函式,初中階段主要對它的一些基礎性質進行了瞭解,高中階段更多的是將它與導數進行銜接,根據拋物線的開口方向,與x軸的交點位置,進而討論與定義域在x軸上的擺放順序,這樣可以判斷導數的正負,最終達到求出單調區間的目的,求出極值及最值。
不等式:這一類問題常常出現在恆成立,或存在性問題中,其實質是求函式的最值。當然關於不等式的.解法,均值不等式,這些不等式的基礎知識點需掌握,還有一類較難的綜合性問題為不等式與數列的結合問題,掌握幾種不等式的放縮技巧是非常必要的。
專題二:數列。以等差等比數列為載體,考察等差等比數列的通項公式,求和公式,通項公式和求和公式的關係,求通項公式的幾種常用方法,求前n項和的幾種常用方法,這些知識點需要掌握。
專題三:三角函式,平面向量,解三角形。三角函式是每年必考的知識點,難度較小,選擇,填空,解答題中都有涉及,有時候考察三角函式的公式之間的互相轉化,進而求單調區間或值域;有時候考察三角函式與解三角形,向量的綜合性問題,當然正弦,餘弦定理是很好的工具。向量可以很好得實現數與形的轉化,是一個很重要的知識銜接點,它還可以和數學的一大難點解析幾何整合。
專題四:立體幾何。立體幾何中,三檢視是每年必考點,主要出現在選擇,填空題中。大題中的立體幾何主要考察建立空間直角座標系,透過向量這一手段求空間距離,線面角,二面角等。
另外,需要掌握稜錐,稜柱的性質,在稜錐中,著重掌握三稜錐,四稜錐,稜柱中,應該掌握三稜柱,長方體。空間直線與平面的位置關係應以證明垂直為重點,當然常考察的方法為間接證明。
專題五:解析幾何。直線與圓錐曲線的位置關係,動點軌跡的探討,求定值,定點,最值這些為近年來考的熱點問題。解析幾何是考生所公認的難點,它的難點不是對題目無思路,不是不知道如何化解所給已知條件,難點在於如何巧妙地破解已知條件,如何巧妙地將複雜的運算量進行化簡。當然這裡邊包含了一些常用方法,常用技巧,需要學生去記憶,體會。
專題六:機率統計,演算法,複數。算發與複數一般會出現在選擇題中,難度較小,機率與統計問題著重考察學生的閱讀能力和獲取資訊的能力,與實際生活關係密切,學生需學會能有效得提取資訊,翻譯資訊。做到這一點時,題目也就不攻自破了。
專題七:極座標與引數方程,幾何證明。這部分所考察的題目比較簡單,主要出現在選擇,填空題中,學生需要熟記公式。