【熱門】高一數學教學工作計劃4篇
時間稍縱即逝,我們又將續寫新的詩篇,展開新的旅程,不妨坐下來好好寫寫工作計劃吧。寫工作計劃需要注意哪些問題呢?下面是小編幫大家整理的高一數學教學工作計劃4篇,希望能夠幫助到大家。
高一數學教學工作計劃 篇1
本學期我擔任高一(3)、(4)兩班的數學教學工作,兩班學生共有138人。大部分學生初中的基礎較差,整體水平不高。從上課兩週來看,學生的學習積極性還比較高,愛問問題的學生比較多;但由於基礎知識不太牢固,沒有良好的學習習慣,自控能力較差,不能正確地定位自己;所以上課效率一般,教學工作有一定的難度,為把本學期教學工作做好,制定如下教學工作計劃。
一、教學質量目標
(1)獲得必要的數學基礎知識和基本技能,理解基本的數學概念、數學結論的本質,體會數學思想和方法。
(2)培養學生的邏輯思維能力、運算能力、空間想象能力,以及綜合運用有關數學知識分析問題和解決問題的能力。使學生逐步地學會觀察、分析、綜合、比較、抽象、概括、探索和創新的能力;運用歸納、演繹和類比的方法進行推理,並正確地、有條理地表達推理過程的能力。
(3) 根據數學的學科特點,加強學習目的性的教育,提高學生學習數學的自覺心和興趣,培養學生良好的學習習慣,實事求是的科學態度,頑強的學習毅力和獨立思考、探索創新的精神。
(4) 使學生具有一定的數學視野,逐步認識數學的科學價值、應用價值和文化價值,形成批判性的思維習慣,崇尚數學的理性精神,體會數學的美學意義,理解數學中普遍存在著的運動、變化、相互聯絡和相互轉化的情形,從而進一步樹立辯證唯物主義和歷史唯物主義世界觀。
(5)學會透過收集資訊、處理資料、製作影象、分析原因、推出結論來解決實際問題的思維方法和操作方法。
(6)本學期是高一的重要時期,教師承擔著雙重責任,既要不斷夯實基礎,加強綜合能力的培養,又要滲透有關高考的思想方法,為三年的學習做好準備。
二、教學目標。
(一)情感目標
(1)透過分析問題的方法的教學,培養學生的學習的興趣。
(2)提供生活背景,透過數學建模,讓學生體會數學就在身邊,培養學數學用數學的意識。
(3)在探究基本函式的性質,體驗獲得數學規律的艱辛和樂趣,在分組研究合作學習中學會交流、相互評價,提高學生的合作意識
(4)基於情意目標,調控教學流程,堅定學習信念和學習信心。
(5)還時間和空間給學生、還課堂給學生、還探索和發現權給學生,給予學生自主探索與合作交流的機會,在發展他們思維能力的同時,發展他們的數學情感、學好數學的自信心和追求數學的科學精神。
(6)讓學生體驗發現挫折矛盾頓悟新的發現這一科學發現歷程法。
(二)能力要求
1、培養學生記憶能力。
(1)透過定義、命題的總體結構教學,揭示其本質特點和相互關係,培養對數學本質問題的背景事實及具體資料的記憶。
(2)透過揭示立體集合、函式、數列有關概念、公式和圖形的對應關係,培養記憶能力。
2、培養學生的運算能力。
(1)透過機率的訓練,培養學生的運算能力。
(2)加強對概念、公式、法則的明確性和靈活性的教學,培養學生的運算能力。
(3)透過函式、數列的教學,提高學生是運算過程具有明晰性、合理性、簡捷效能力。
(4)透過一題多解、一題多變培養正確、迅速與合理、靈活的運算能力,促使知識間的滲透和遷移。
(5)利用數形結合,另闢蹊徑,提高學生運算能力。
三、學情分析
高一作為起始年級,作為從義務階段邁入應試征程的適應階段,該有的是一份執著。他的特殊性就在於它的跨越性,理想的期盼與學法的突變,難度的加強與惰性的生成等等矛盾衝突伴隨著高一新生的成長,面對新教材的我們也是邊摸索邊改變,樹立新的教學理念,並落實在課堂教學的各個環節,才能不負眾望。我們要從學生的認識水平和實際能力出發,研究學生的心理特徵,做好初三與高一的銜接工作,幫助學生解決好從初中到高中學習方法的過渡。從高一起就注意培養學生良好的數學思維方法,良好的學習態度和學習習慣,以適應高中領悟性的學習方法。
四、促進目標達成的重點工作及措施
重點工作:
認真貫徹高中數學新課標精神,樹立新的教學理念,以雙基教學為主要內容,堅持抓兩頭、帶中間、整體推進,使每個學生的數學能力都得到提高和發展。
分層推進措施
1、重視學生非智力因素培養,要經常性地鼓勵學生,增強學生學習數學興趣,樹立勇於克服困難與戰勝困難的信心。
2、合理引入課題,由數學活動、故事、提問、師生交流等方式激發學生學習興趣,注意從例項出發,從感性提高到理性;注意運用對比的方法,反覆比較相近的概念;注意結合直觀圖形,說明抽象的知識;注意從已有的知識出發,啟發學生思考。
3、培養學生解答考題的能力,透過例題,從形式和內容兩方面對所學知識進行能力方面的分析,引導學生了解數學需要哪些能力要求。
4、讓學生透過單元考試,檢測自己的實際應用能力,從而及時總結經驗,找出不足,做好充分的準備
5、抓住公式的推導和內在聯絡;加強複習檢查工作;抓住典型例題的分析,講清解題的關鍵和基本方法,注重提高學生分析問題的能力。
6、加強培養學生的邏輯思維能力和解決實際問題的能力,以及培養提高學生的自學能力,養成善於分析問題的習慣,進行辨證唯物主義教育;同時重視數學應用意識及應用能力的培養。
7、自始至終貫徹教學四環節(引入、探究、例析、反饋),針對不同的教材內容選擇不同教法,提倡創新教學方法,把學生被動接受知識轉化主動學習知識。
8、注意研究學生,做好初、高中學習方法的銜接工作。集中精力打好基礎,分項突破難點。所列基礎知識依據課程標準設計,著眼於基礎知識與重點內容,要充分重視基礎知識、基本技能、基本方法的教學,為進一步的學習打好堅實的基礎,切勿忙於過早的拔高,上難題。同時應放眼高中教學全域性,注意高考命題中的知識要求,能力要求及新趨勢,這樣才能統籌安排,循序漸進,使高一的數學教學與高中教學的全域性有機結合。
高一數學教學工作計劃 篇2
一、學生在數學學習上存在的主要問題
我校高一學生在數學學習上存在不少問題,這些問題主要表現在以下方面:
1、進一步學習條件不具備.高中數學與初中數學相比,知識的深度、廣度,能力要求都是一次飛躍.這就要求必須掌握基礎知識與技能為進一步學習作好準備。高中數學很多地方難度大、方法新、分析能力要求高.如二次函式在閉區間上的最值問題,函式值域的求法,實根分佈與參變數方程,三角公式的變形與靈活運用,空間概念的形成,排列組合應用題及實際應用問題等.客觀上這些觀點就是分化點,有的內容還是高初中教材都不講的脫節內容,如不採取補救措施,查缺補漏,分化是不可避免的。
2、被動學習.許多同學進入高中後,還像初中那樣,有很強的依賴心理,跟隨老師慣性運轉,沒有掌握學習主動權.表現在不定計劃,坐等上課,課前沒有預習,對老師要上課的內容不瞭解,上課忙於記筆記,沒聽到門道,沒有真正理解所學內容。不知道或不明確學習數學應具有哪些學習方法和學習策略;老師上課一般都要講清知識的來龍去脈,剖析概念的內涵,分析重點難點,突出思想方法.而一部分同學上課沒能專心聽課,對要點沒聽到或聽不全,筆記記了一大本,問題也有一大堆,課後又不能及時鞏固、總結、尋找知識間的聯絡,只是趕做作業,亂套題型,對概念、法則、公式、定理一知半解,機械模仿,死記硬背.也有的晚上加班加點,白天無精打采,或是上課根本不聽,自己另搞一套,結果是事倍功半,收效甚微。
3、對自己學習數學的好差(或成敗)不瞭解,更不會去進行反思總結,甚至根本不關心自己的成敗。
4、不能計劃學習行動,不會安排學習生活,更不能調節控制學習行為,不能隨時監控每一步驟,對學習結果不會正確地自我評價。
5、不重視基礎.一些自我感覺良好的同學,常輕視基本知識、基本技能和基本方法的學習與訓練,經常是知道怎麼做就算了,而不去認真演算書寫,但對難題很感興趣,以顯示自己的水平,好高鶩遠,重量輕質 ,陷入題海.到正規作業或考試中不是演算出錯就是中途卡殼 。
此外,還有許多學生數學學習興趣不濃厚,不具備應用數學的意識和能力,對數學思想方法重視不夠或掌握情況不好,缺乏將實際問題轉化為數學問題的能力,缺乏準確運用數學語言來分析問題和表達思想的能力,思維缺乏靈活性、批判性和發散性等。所有這些都嚴重製約著學生數學成績的提高。
二、教學策略思考與實踐
針對我校高一學生的具體情況,我在高一數學新教材教學實踐與探究中,貫徹因人施教,因材施教原則。以學法指導為突破口;著重在讀、講、練、輔、作業等方面下功夫,取得一定效果。
加強學法指導,培養良好學習習慣。良好的學習習慣包括制定計劃、課前自學、專心上課、及時複習、獨立作業、解決疑難、系統小結和課外學習幾個方面。
制定計劃使學習目的明確,時間安排合理,不慌不忙,穩紮穩打,它是推動學生主動學習和克服困難的內在動力。但計劃一定要切實可行,既有長遠打算,又有短期安排,執行過程中嚴格要求自己,磨鍊學習意志。
課前自學是學生上好新課,取得較好學習效果的基礎.課前自學不僅能培養自學能力,而且能提高學習新課的興趣,掌握學習主動權.自學不能搞走過場,要講究質量,力爭在課前把教材弄懂,上課著重聽老師講課的思路,把握重點,突破難點,儘可能把問題解決在課堂上。
上課是理解和掌握基本知識、基本技能和基本方法的關鍵環節。學然後知不足,課前自學過的同學上課更能專心聽課,他們知道什麼地方該詳,什麼地方可略;什麼地方該精雕細刻,什麼地方可以一帶而過,該記的地方才記下來,而不是全抄全錄,顧此失彼。
及時複習是高效率學習的重要一環,透過反覆閱讀教材,多方查閱有關資料,強化對基本概念知識體系的理解與記憶,將所學的新知識與有關舊知識聯絡起來,進行分析比較,一邊複習一邊將複習成果整理在筆記上,使對所學的新知識由懂到會。
獨立作業是學生透過自己的獨立思考,靈活地分析問題、解決問題,進一步加深對所學新知識的理解和對新技能的掌握過程.這一過程是對學生意志毅力的考驗,透過運用使學生對所學知識由會到熟。
解決疑難是指對獨立完成作業過程中暴露出來對知識理解的錯誤,或由於思維受阻遺漏解答,透過點撥使思路暢通,補遺解答的過程.解決疑難一定要有鍥而不捨的精神,做錯的作業再做一遍。對錯誤的地方沒弄清楚要反覆思考,實在解決不了的要請教老師和同學,並要經常把易錯的地方拿出來複習強化,作適當的重複性練習,把求老師問同學獲得的東西消化變成自己的知識,長期堅持使對所學知識由熟到活。
系統小結是學生透過積極思考,達到全面系統深刻地掌握知識和發展認識能力的重要環節.小結要在系統複習的基礎上以教材為依據,參照筆記與有關資料,透過分析、綜合、類比、概括,揭示知識間的內在聯絡.以達到對所學知識融會貫通的目的.經常進行多層次小結,能對所學知識由活到悟。
課外學習包括閱讀課外書籍與報刊,參加學科競賽與講座,走訪高年級同學或老師交流學習心得等.課外學習是課內學習的補充和繼續,它不僅能豐富學生的文化科學知識,加深和鞏固課內所學的知識,而且能滿足和發展他們的興趣愛好,培養獨立學習和工作能力,激發求知慾與學習熱情。
1、讀。俗話說不讀不憤,不憤不悱。首先要讀好概念。讀概念要咬文嚼字,掌握概念內涵和外延及辨析概念。例如,集合是數學中的一個原始概念,是不加定義的。它從常見的我校高一年級學生 、我家的家用電器、太平洋、大西洋、印度洋、北冰洋及自然數等事物中抽象出來,但集合的概念又不同於特殊具體的實物集合,集合的確定及性質特徵是由一組公理來界定的。確定性、無序性、互異性常常是集合的代名詞。
再如象限角的概念,要向學生解釋清楚,角的始邊與x軸的非負半軸重合和與x軸的正半軸重合的細微差別;根據定義如果終邊不在某一象限則不能稱為象限角等等。這樣可以引導學生從多層次,多角度去認識和掌握數學概念。其次讀好定理公式和例題。閱讀定理公式時,要分清條件和結論。如高一新教材(上)等比數列的前n項和Sn.有q1和q=1兩種情形;對數計算中的一個公式,其中要求讀例題時,要注重審題分析,注意題中的隱含條件,掌握解題的方法和書寫規範。如在解對數函式題時,要注意真數大於0的隱含條件;解有關二次函式題時要注意二次項係數不為零的隱含條件等。讀書要鼓勵學生相互議論。俗語說議一議知是非,爭一爭明道理。例如,讓學生議論數列與數集的聯絡與區別。數列與數的集合都是具有某種共同屬性的全體。數列中的數是有順序的,而數集中的元素是沒有順序的;同一個數可以在數列中重複出現,而數集中的元素是沒有重複的(相同的數在數集中算作同一個元素)。在引導學生閱讀時,教師要經常幫助學生歸類、總結,儘可能把相關知識表格化。如一元二次不等式的解情況列表,三角函式的圖象與性質列表等,便於學生記憶掌握。
2、講。外國有一位教育家曾經說過:教師的作用在於將冰冷的知識加溫後傳授給學生。講是實踐這種傳授的最直接和最有效的教學手段。首先講要注意循序漸進的原則。循序漸進,防止急躁。由於學生年齡較小,閱歷有限,為數不少的高中學生容易急躁,有的同學貪多求快,囫圇吞棗,有的同學想靠幾天衝刺一蹴而就,有的取得一點成績便洋洋自得,遇到挫折又一蹶不振。針對這些情況,教師要讓學生懂得學習是一個長期的鞏固舊知識、發現新知識的積累過程,決非一朝一夕可以完成,為什麼高中要上三年而不是三天!許多優秀的同學能取得好成績,其中一個重要原因是他們的基本功紮實,他們的閱讀、書寫、運算技能達到了自動化或半自動化的熟練程度。
每堂新授課中,在複習必要知識和展示教學目標的基礎上,老師著重揭示知識的產生、形成、發展過程,解決學生疑惑。比如在學習兩角和差公式之前,學生已經掌握五套誘導公式,可以將求任意角三角函式值問題轉化為求某一個銳角三角函式值的問題。此時教師應進一步引導學生:對於一些半特殊的教(750度,150度等)能不能不透過查表而求出精確值呢?這樣兩角和差的三角函式就呼之欲出了,極大激發了學生的學習興趣。講課要注意從簡單到複雜的'過程,要讓學生從感性認識上升到理性認識。鼓勵學生應積極、主動參與課堂活動的全過程,教、學同步。讓學生自己真正做學習的主人。
例如,講解函式的圖象應從振幅、週期、相位依次各自進行變化,然後再綜合,並儘可能利用多媒體輔助教學,使學生容易接受。其次講要注重突出數學思想方法的教學,注重學生數學能力的培養。例如講到等比數列的概念、通項公式、等比中項、等比數列的性質、等比數列的前n項和。可以引導學生對照等差數列的相應的內容,比較聯絡。讓學生更清楚等差數列和等比數列是兩個對偶概念。
3、練。數學是以問題為中心。學生怎麼應用所學知識和方法去分析問題和解決問題,必須進行練習。首先練習要重視基礎知識和基本技能,切忌過早地進行高、深、難練習。鑑於目前我校高一的生源現狀,基礎訓練是很有必要的。課本的例題、練習題和習題要求學生要題題過關;補充的練習,應先是課本中練習及習題的簡單改造題,這有利於學生鞏固基礎知識和基本技能。讓學生透過認真思考可以完成。即讓學生跳一跳可以摸得著。一定要讓學生在練習中強化知識、應用方法,在練習中分步達到教學目標要求並獲得再練習的興趣和信心。例如根據數列前幾項求通項公式練習,在新教材高一(上)P111例題2上簡單地做一些改造,便可以變化出各種求解通項公式方法的題目;再如數列複習參考題第12題;就是一個改造性很強的數學題,教師可以在上面做很多文章。其次要講練結合。學生要練習,老師要評講。多講解題思路和解題方法,其中包括成功的與錯誤的。特別是注意要充分暴露錯誤的思維發生過程,在課堂造就民主氣氛,充分傾聽學生意見,哪怕走點彎路 ,吃點苦頭另一方面,則引導學生各抒己見,評判各方面之優劣,最後選出大家公認的最佳方法。還可適當讓學生涉及一些一題多解的題目,拓展思維空間,培養學生思維的多面性和深刻性。
例如,高一(下)P26例5求證 。可以從一邊證到另一邊,也可以作差、作商比較,還可以用分析法來證明;再如解不等式。常用的解法是將無理不等式化為有理不等式求解。但還可以利用換元法,將無理不等式化為關於t的一元二次不等式求解。除此之外,亦可利用圖象法求解。在同一直角座標系中作出它們的影象。求兩圖在x軸上方的交點的橫座標為2,最終得解。要求學生掌握通解通法同時,也要講究特殊解法。最後練習要增強應用性。例如用函式、不等式、數列、三角、向量等相關知識解實際應用題。引導學生學會建立數學模型,並應用所學知識,研究此數學模型。
4、作業。鑑於學生現有的知識、能力水平差異較大,為了使每一位學生都能在自己的最近發展區更好地學習數學,得到最好的發展,制定分層次作業。即將作業難度和作業量由易到難分成A、B、C三檔,由學生根據自身學習情況自主選擇,然後在充分尊重學生意見的基礎上再進行協調。以後的時間裡,根據學生實際學習情況,隨時進行調整。
5、輔導。輔導指兩方面,培優和補差。對於數學尖子生,主要培養其自學能力、獨立鑽研精神和集體協作能力。具體做法:成立由三至六名學生組成的討論組,教師負責為他們介紹高考、競賽參考書,並定期提供學習資料和諮詢、指導。下面著重談談補差工作。輔導要鼓勵學生多提出問題,對於不能提高的同學要從平時作業及練習考試中發現問題,跟蹤到人,跟蹤到具體知識。要有計劃,有針對性和目的性地輔導,切忌冷飯重抄和無目標性。要及時檢查輔導效果,做到學生人人知道自己存在問題(越具體越好),老師對輔導學生情況要了如指掌。對學有困難的同學,要耐心細緻輔導,還要注意鼓勵學生戰勝自己,提高自已的分析和解決問題的能力。
高一數學教學工作計劃 篇3
本節課的教學內容,是指數函式的概念、性質及其簡單應用。教學重點是指數函式的影象與性質。
I這是指數函式在本章的位置。
指數函式是學生在學習了函式的概念、圖象與性質後,學習的第一個新的初等函式。它是一種新的函式模型,也是應用研究函式的一般方法研究函式的一次實踐。指數函式的學習,一方面可以進一步深化對函式概念的理解,另一方面也為研究對數函式、冪函式、三角函式等初等函式打下基礎。因此,本節課的學習起著承上啟下的作用,也是學生體驗數學思想與方法應用的過程。
指數函式模型在貸款利率的計算以及考古中年代的測算等方面有著廣泛地應用,與我們的日常生活、生產和科學研究有著緊密的聯絡,因此,學習這部分知識還有著一定的現實意義。
Ⅱ.教學目標設定
1。學生能從具體例項中概括指數函式典型特徵,並用數學符號表示,建構指數函式的概念。
2。學生透過自主探究,掌握指數函式的圖象特徵與性質,能夠利用指數函式的性質比較兩個冪的大小。
3。學生運用數形結合的思想,經歷從特殊到一般、具體到抽象的研究過程,體驗研究函式的一般方法。
4。在探究活動中,學生透過獨立思考和合作交流,發展思維,養成良好思維習慣,提升自主學習能力。
Ⅲ.學生學情分析
授課班級學生為南京師大附中實驗班學生。
1。學生已有認知基礎
學生已經學習了函式的概念、圖象與性質,對函式有了初步的認識。學生已經完成了指數取值範圍的擴充,具備了進行指數運算的能力。學生已有研究一次函式、二次函式等初等函式的直接經驗。學生數學基礎與思維能力較好,初步養成了獨立思考、合作交流、反思質疑等學習習慣。
2。達成目標所需要的認知基礎
學生需要對研究的目標、方法和途徑有初步的認識,需要具備較好的歸納、猜想和推理能力。
3。難點及突破策略
難點:1。 對研究函式的一般方法的認識。
2。 自主選擇底數不當導致歸納所得結論片面。
突破策略:
1。教師引導學生先明確研究的內容與方法,從總體上認識研究的目標與手段。
2。組織彙報交流活動,展現思維過程,相互評價,相互啟發,促進反思。
3。對猜想進行適當地證明或說明,合情推理與演繹推理相結合。
Ⅳ.教學策略設計
根據學生已有學習基礎,為提升學生的學習能力,本節課的教學,採用自主學習方式。透過教師引領學生經歷研究函式及其性質的過程,認識研究的目標與策略,在研究的過程中逐漸完善研究的方法與手段。
學生的自主學習,具體落實在三個環節:
(1)建構指數函式概念時,學生自主舉例,歸納特徵,並用符號表示,討論底數的取值範圍,完善概念。
(2)探究指數函式圖象特徵與性質時,學生自選底數,開展自主研究,並透過彙報交流相互提升。
(3)性質應用階段,學生自主舉例說明指數函式性質的應用。
研究函式的性質,可以從形和數兩個方面展開。從圖形直觀和數量關係兩個方面,經歷從特殊到一般、具體到抽象的過程。藉助具體的指數函式的圖象,觀察特徵,發現函式性質,進而猜想、歸納一般指數函式的圖象特徵與性質,並適時應用函式解析式輔以必要的說明和證明。
Ⅴ.教學過程設計
1。創設情境建構概念
師:我們已經學習了函式的概念、圖象與性質,大家都知道函式可以刻畫兩個變數之間的關係。你能用函式的觀點分析下面的例子嗎?
師:大家知道細胞分裂的規律嗎?(出示情境問題)
[情境問題1]某細胞分裂時,由一個分裂成2個,2個分裂成4個,4個分裂成8個,……如果細胞分裂x次,相應的細胞個數為y,如何描述這兩個變數的關係?
[情境問題2]某種放射性物質不斷變化為其他物質,每經過一年,這種物質剩餘的質量是原來的84%。如果經過x年,該物質剩餘的質量為y,如何描述這兩個變數的關係?
[師生活動]引導學生分析,找到兩個變數之間的函式關係,並得到解析式y=2x和y=0。84x。
師:這樣的函式你見過嗎?是一次函式嗎?二次函式?這樣的函式有什麼特點?你能再舉幾個例子嗎?
〖問題1類似的函式,你能再舉出一些例子嗎?這些函式有什麼共同特點?能否寫成一般形式?
[設計意圖]透過列舉生活中指數函式的具體例子,感受指數函式與實際生活的聯絡。引導學生從具體例項中概括典型特徵,初步形成指數函式的概念,並用數學符號表示。初步得到y=ax這個形式後,引導學生關注底數的取值範圍,完成概念建構。指數範圍擴充到實數後,關注x∈R時,y=ax是否始終有意義,因此規定a>0。a≠1並不是必須的,常函式在高等數學裡是基本函式,也有重要的意義。為了使指數函式與對數函式能構成反函式,規定a≠1。此處不需對此解釋,只要補充說“1的任何次方總是1,所以通常還規定a≠1”。
[師生活動]學生舉例,教師引導學生觀察,其共同特點是自變數在指數位置,從而初步建立函式模型y=ax。
[教學預設]學生能舉出具體的例子——y=3x,y=0。5x…。如出現y=(-2)x最好,更便於引發對a的討論,但一般不會出現。進而提出這類函式一般形式y=ax。
Ⅵ.教後反思回顧
一、對於指數函式概念的認識
指數函式是一種函式模型,其基本特徵是自變數在指數位置。底數取值範圍有規定,使得這一模型形式簡單又不失本質。不必糾結於“y=22x是否為指數函式”,把重點放在概念的合理性的理解以及體會模型思想。
二、對於培養學生思維習慣的考慮
在學生自主探索的過程中,教師應注意培養學生良好的思維習慣。實際上,選擇底數a的資料的大小和數量,需要對指數函式的性質有預判;從列表到作圖的過程中,都可以感受到指數函式單調性等性質;觀察並歸納性質,既需要特殊到一般的推理模式,也應養成有序進行觀察和歸納的良好的思維習慣。對所歸納的指數函式的性質,應根據學生已有的知識水平或教學要求進行證明或合理的說明。學生不僅學到了數學知識,也初步體驗了研究問題的基本方法。
三、關於設計定位的反思
本節課的教學設計,力圖體現因材施教原則。不同的學情下,教師應採用不同的教學策略。如果學生基礎相對薄弱,問題的提出可以分層次進行。另外,注意透過“你是怎麼想的?”“你同意他的意見嗎?為什麼”等問話形式,促使學生暴露思維過程。
高一數學教學工作計劃 篇4
一、指導思想
準確把握《教學大綱》和《考試大綱》的各項基本要求,立足於基礎知識和基本技能的教學,注重滲透數學思想和方法。針對學生實際,不斷研究數學教學,改進教法,指導學法,奠定立足社會所需要的必備的基礎知識、基本技能和基本能力,著力於培養學生的創新精神,運用數學的意識和能力,奠定他們終身學習的基礎。
二、教學建議
1、深入鑽研教材。以教材為核心,深入研究教材中章節知識的內外結構,熟練把握知識的邏輯體系,細緻領悟教材改革的精髓,逐步明確教材對教學形式、內容和教學目標的影響。
2、準確把握新大綱。新大綱修改了部分內容的教學要求層次,準確把握新大綱對知識點的基本要求,防止自覺不自覺地對教材加深加寬。同時,在整體上,要重視數學應用;重視數學思想方法的滲透。如增加閱讀材料(開闊學生的視野),以拓寬知識的廣度來求得知識的深度。
3、樹立以學生為主體的教育觀念。學生的發展是課程實施的出發點和歸宿,教師必須面向全體學生因材施教,以學生為主體,構建新的認識體系,營造有利於學生學習的氛圍。
4、發揮教材的多種教學功能。用好章頭圖,激發學生的學習興趣;發揮閱讀材料的功能,培養學生用數學的意識;組織好研究性課題的教學,讓學生感受社會生活之所需;小結和複習是培養學生自學的好材料。
5、落實課外活動的內容。組織和加強數學興趣小組的活動內容。
三、教學內容
第一章集合與函式概念
1.透過例項,瞭解集合的含義,體會元素與集合的屬於關係。
2.能選擇自然語言、圖形語言、集合語言(列舉法或描述法)描述不同的具體問題,感受集合語言的意義和作用。
3.理解集合之間包含與相等的含義,能識別給定集合的子集。
4.在具體情境中,瞭解全集與空集的含義。
5.理解兩個集合的並集與交集的含義,會求兩個簡單集合的並集與交集。
6.理解在給定集合中一個子集的補集的含義,會求給定子集的補集。
7.能使用Venn圖表達集合的關係及運算,體會直觀圖示對理解抽象概念的作用。
8.透過豐富例項,進一步體會函式是描述變數之間的依賴關係的重要數學模型,在此基礎上學習用集合與對應的語言來刻畫函式,體會對應關係在刻畫函式概念中的作用;瞭解構成函式的要素,會求一些簡單函式的定義域和值域;瞭解對映的概念。
9.在實際情境中,會根據不同的需要選擇恰當的方法(如影象法、列表法、解析法)表示函式。
10.透過具體例項,瞭解簡單的分段函式,並能簡單應用。
11.透過已學過的函式特別是二次函式,理解函式的單調性、最大(小)值及其幾何意義;結合具體函式,瞭解奇偶性的含義。
12.學會運用函式圖象理解和研究函式的性質。
課時分配(14課時)
第二章基本初等函式(I)
1.透過具體例項,瞭解指數函式模型的實際背景。
2.理解有理指數冪的含義,透過具體例項瞭解實數指數冪的意義,掌握冪的運算。
3.理解指數函式的概念和意義,能借助計算器或計算機畫出具體指數函式的圖象,探索並理解指數函式的單調性與特殊點。
4.在解決簡單實際問題過程中,體會指數函式是一類重要的函式模型。
5.理解對數的概念及其運算性質,知道用換底公式能將一般對數轉化成自然對數或常用對數;透過閱讀材料,瞭解對數的發現歷史以及其對簡化運算的作用。
6.透過具體例項,直觀瞭解對數函式模型所刻畫的數量關係,初步理解對數函式的概念,體會對數函式是一類重要的函式模型;能借助計算器或計算機畫出具體對數函式的圖象,探索並瞭解對數函式的單調性和特殊點。
7.透過例項,瞭解冪函式的概念;結合函式的圖象,瞭解它們的變化情況。
課時分配(15課時)
第三章函式的應用
1.結合二次函式的圖象,判斷一元二次方程根的存在性及根的個數,從而瞭解函式的零點與方程根的聯絡。
根據具體函式的圖象,能夠藉助計算器用二分法求相應方程的近似解,瞭解這種方法是求方程近似解的常用方法。
2.利用計算工具,比較指數函式、對數函式以及冪函式增長差異;結合例項體會直線上升、指數爆炸、對數增長等不同函式型別增長的含義。
3.收集一些社會生活中普遍使用的函式模型(指數函式、對數函式、冪函式、分段函式等)的例項,瞭解函式模型的廣泛應用。
4.根據某個主題,收集17世紀前後發生的一些對數學發展起重大作用的歷史事件和人物(開普勒、伽利略、笛卡兒、牛頓、萊布尼茨、尤拉等)的有關資料或現實生活中的函式例項,採取小組合作的方式寫一篇有關函式概念的形成、發展或應用的文章,在班級中進行交流。
課時分配(8課時)
3.1.1 | 方程的根與函式的零點 | 約1課時 | 10月25日 |
3.1.2 | 用二分法求方程的近似解 | 約2課時 | 10月26日27日 |
3.2.1 | 幾類不同增長的函式模型 | 約2課時 | 10月30日 | 11月3日 |
3.2.2 | 函式模型的應用例項 | 約2課時 | |
小結 | 約1課時 |
考生只要在全面複習的基礎上,抓住重點、難點、易錯點,各個擊破,夯實基礎,規範答題,一定會穩中求進,取得優異的成績。