查文庫>讀後感> 《幾何原本》讀後感範文(精選8篇)

《幾何原本》讀後感

《幾何原本》讀後感範文(精選8篇)

  認真讀完一本名著後,你有什麼領悟呢?現在就讓我們寫一篇走心的讀後感吧。那麼我們該怎麼去寫讀後感呢?以下是小編為大家整理的《幾何原本》讀後感範文(精選8篇),僅供參考,歡迎大家閱讀。

  《幾何原本》讀後感1

  《幾何原本》作為數學的聖經,第一部系統的數學著作,牛頓,愛因斯坦,就是以這種形式寫的《自然哲學的數學原理》和《相對論》,斯賓諾莎寫出哲學著作《倫理學》,倫理學可以作為哲學與社會科學以及心理學的介面,都是推理性很強。

  幾何原本總共13卷,研究前六卷就可以了,因為後邊的都是應用前邊的理論,應用到具體的領域,無理數,立體幾何等領域,幾何原本我認為最精髓的就是合理的假設,對點線面的抽象,這樣才得以使得後面的定理成立,其中第五個公設後來還被推翻了,以點線面作為基礎,以歐幾里得工具作為工具,進行了各種幾何現象的嚴密推理,我認為這些定理成立的條件必須是在,對幾條哲學原則默許了之後,才能成立。主要是最簡單的幾何形狀,從怎麼畫出來,畫出來也是有根據的,再就是各種形狀的性質,以及各種形狀之間關係的定理,都是一步一步推理出來的。

  在幾何原本後續的有阿波羅尼奧斯的《圓錐截線論》,牛頓的《自然哲學的數學原理》,算是比較系統的數學著作,也都是用歐幾里得工具進行證明的,後來的微積分工具的出現,我認為是圓周率的求解過程,無限接近的思想,才使得微積分工具產生,現代數學看似陣容豪華,可是並沒有新的工具的出現,只是對微積分工具在各個形狀上進行應用,數學主要是在空間上做文章,現在數學能幹的活看似挺多,但是也要得益於物理學的發展,數學一方面往一般性方面發展,都忘了,細想數學思想是比較沒什麼,只是腦力勞作比較大,特別是只是純數學研究,不做思想的人,很累也做不出有意義的工作。

  看完二十世紀數學史,發現裡面的人的著作,我一本也不想看,太虛。

  《幾何原本》讀後感2

  也許這算不上是個謎。稍具文化修養的人都會告訴你,歐幾里德《幾何原本》是明末傳入的,它的譯者是徐光啟與利瑪竇。但究竟何時傳入,在中外科技史界卻一直是一個懸案。

  著名的科技史家李約瑟在《中國科學技術史》中指出:“有理由認為,歐幾里德幾何學大約在公元1275年透過阿拉伯人第一次傳到中國,但沒有多少學者對它感興趣,即使有過一個譯本,不久也就失傳了。”這並非離奇之談,元代一位老穆斯林技術人員曾為蒙古人服務,一位受過高等教育的敘利亞景教徒愛薩曾是翰林院學士和大臣。波斯天文學家札馬魯丁曾為忽必烈設計過《萬年曆》。歐幾里德的幾何學就是透過這方面的交往帶到中國的。14世紀中期成書的《元秘書監志》卷七曾有記載:當時官方天文學家曾研究某些西方著作,其中包括兀忽烈的的《四季演算法段數》15冊,這部書於1273年收入皇家書庫。“兀忽烈的”可能是“歐幾里德”的另一種音譯,“四擘”。

  是阿拉伯語“原本”的音譯。著名的數學史家嚴敦傑認為傳播者是納西爾·丁·土西,一位波斯著名的天文學家的。

  有的外國學者認為歐幾里德《幾何原本》的任何一種阿拉伯譯本都沒有多於13冊,因為一直到文藝復興時才增輯了最後兩冊,因此對元代時就有15冊的歐幾里德的幾何學之說似難首肯。

  有的史家提出原文可能仍是阿拉伯文,而中國人只譯出了書名。也有的認為演繹幾何學知識在中國傳播得這樣遲緩,以後若干世紀都看不到這種影響,說明元代顯然不存在有《幾何原本》中譯本的可能性。也有的學者提出假設:皇家天文臺搞了一個譯本,可能由於它與2000年的中國數學傳統背道而馳而引不起廣泛的興趣的。

  真正在中國發生影響的譯本是徐光啟和利瑪竇合譯的克拉維斯的註解本。但有的同志認為這算不上是完整意義上的歐幾里德的幾何學。因為利瑪竇老師的這個底本共十五卷,利瑪竇只譯出了前六卷,認為已達到他們用數學來籠絡人心的目的,於是沒有答應徐光啟希望全部譯完的要求。200多年後,後九卷才由著名數學家李善蘭與美國傳教士偉烈亞力合譯完成,也就是說,直到1857年這部古希臘的數學名著才有了完整意義上的中譯本。那麼,這能否說:《幾何原本》的完整意義上的傳入中國是在近代呢?

  《幾何原本》讀後感3

  “古希臘”這個詞,我們耳熟能詳,很多人卻不瞭解它。

  如果《幾何原本》的作者歐幾里得能夠代表整個古希臘人民,那麼我可以說,古希臘是古代文化中最燦爛的一支——因為古希臘的數學中,所包含的不僅僅是數學,還有著難得的邏輯,更有著耐人尋味的哲學。

  《幾何原本》這本數學著作,以幾個顯而易見、眾所周知的定義、公設和公理,互相搭橋,展開了一系列的命題:由簡單到複雜,相輔而成。其邏輯的嚴密,不能不令我們佩服。

  就我目前拜訪的幾個命題來看,歐幾里得證明關於線段“一樣長”的題,最常用、也是最基本的,便是畫圓:因為,一個圓的所有半徑都相等。一般的數學思想,都是很複雜的,這邊剛講一點,就又跑到那邊去了;而《幾何原本》非常容易就被我接受,其原因大概就在於歐幾里得反覆運用一種思想、使讀者不斷接受的緣故吧。

  不過,我要著重講的,是他的哲學。

  書中有這樣幾個命題:如,“等腰三角形的兩底角相等,將腰延長,與底邊形成的兩個補角亦相等”,再如,“如果在一個三角形裡,有兩個角相等,那麼也有兩條邊相等”。這些命題,我在讀時,內心一直承受著幾何外的震撼。

  我們七年級已經學了幾何。想想那時做這類證明題,需要證明一個三角形中的兩個角相等的時候,我們總是會這麼寫:“因為它是一個等腰三角形,所以兩底角相等”——我們總是習慣性的認為,等腰三角形的兩個底角就是相等的;而看《幾何原本》,他思考的是“等腰三角形的兩個底角為什麼相等”。想想看吧,一個思想習以為常,一個思想在思考為什麼,這難道還不夠說明現代人的問題嗎?

  大多數現代人,好奇心似乎已經泯滅了。這裡所說的好奇心不單單是指那種對新奇的事物感興趣,同樣指對平常的事物感興趣。比如說,許多人會問“宇航員在空中為什麼會飄起來”,但也許不會問“我們為什麼能夠站在地上而不會飄起來”;許多人會問“吃什麼東西能減肥”,但也許不會問“羊為什麼吃草而不吃肉”。

  我們對身邊的事物太習以為常了,以致不會對許多“平常”的事物感興趣,進而去琢磨透它。牛頓為什麼會發現萬有引力?很大一部分原因,就在於他有好奇心。

  如果僅把《幾何原本》當做數學書看,那可就大錯特錯了:因為古希臘的數學滲透著哲學,學數學,就是學哲學。

  哲學第一課:人要建立好奇心,不僅探索新奇的事物,更要探索身邊的平常事,這就是我讀《幾何原本》意外的收穫吧!

  《幾何原本》讀後感4

  只要上過初中的人都學過幾何,可是不一定知道把幾何介紹到中國來的是明朝的大科學家徐光啟和來自義大利的傳教士利瑪竇,更不一定知道是徐光啟把這門“測地學”創造性地意譯為“幾何”的。從1667年《幾何原本》前六卷譯完至今已有四百年,11月9日上海等地舉行了形式多樣的紀念活動。來自義大利、美國、加拿大、法國、日本、比利時、芬蘭、荷蘭、中國等9個國家及兩岸四地的60餘位中外學者聚會徐光啟的安息之地——上海徐彙區,紀念徐光啟暨《幾何原本》翻譯出版400週年。

  “一物不知,儒者之恥。”

  徐光啟家世平凡,父親是一個不成功的商人,破產後在上海務農,家境不佳。徐光啟19歲時中秀才,過了16年才中舉人,此後又7年才中進士。在參加翰林院選拔時列第四名,即被選為翰林院庶吉士,相當於是明帝國皇家學院的博士研究生。他殿試排名三甲五十二名,名次靠後,照理沒有資格申請入翰林院。他的同科進士、也是他年滿花甲的老師黃體仁主動讓賢,把考翰林院的機會讓給了他。

  《明史·徐光啟傳》中開篇用33個字講完他的科舉經歷,緊接著就說他“從西洋人利瑪竇學天文、歷算、火器,盡其術。遂遍習兵機、屯田、鹽策、水利諸書”,可見如果沒有跟隨利瑪竇學習西方科學,徐光啟只是有明一代數以千萬計的官僚中不出奇的一員。但是因為在1600年遇上了利瑪竇,且在翰林院學習期間有機會從學於利瑪竇,他得從一干庸眾中脫穎而出。

  利瑪竇(MatteoRicci)1552年生於義大利馬切拉塔,1571年在羅馬成為耶穌會的見習修士,在教會里接受了神學、古典文學和自然科學的廣泛訓練,又在印度的果阿學會了繪製地圖和製造各類科學儀器,尤其是天文儀器。

  利瑪竇於1577年5月離開羅馬,於1583年2月來到中國。8月在廣東肇慶建立“仙花寺”,開始傳教。可是一開始很不順利。為此,利瑪竇轉變了策略,決定採取曲線傳教的方針,為了接近中國人,利瑪竇不僅說中文,寫漢字,而且生活也力求中國化。正式服裝也改成了寬衣博帶的儒生裝束。

  1598年6月利瑪竇去北京見皇帝,未能見到,次年返回南京。在南京期間,利瑪竇早已赫赫有名,尤其是他過目不忘、倒背如流的記憶術給人留下了深刻的印象,一傳十,十傳百,已神乎其神。加之利瑪竇高明的社交手段,以及他的那些引人入勝的、代表著西方工藝水平的工藝品和科學儀器,引得高官顯貴和名士文人都樂於和他交往。利瑪竇則藉此來達到自己的目的——推動傳教活動。

  也正是利瑪竇的學識和魅力吸引了徐光啟。根據利瑪竇的日記記載,約在1597年7月到1600年5月之間。徐光啟和利瑪竇曾見過一面,利瑪竇說這是一次短暫的見面。徐光啟主要向利瑪竇討教一些基督教教義,雙方並沒有深談。和利瑪竇分手之後,徐光啟花了兩三年時間研究基督教義,思考自己的命運。1603年,徐光啟再次去找利瑪竇,但利瑪竇這時已經離開南京到北京去了。徐光啟拜見了留在南京的傳教士羅如望,和之長談數日後,終於受洗成為了基督教徒。

  1601年1月,利瑪竇再次晉京面聖,此次獲得成功,利瑪竇帶來的見面禮是自鳴鐘和鋼琴,這兩樣東西是要經常修理的,於是他被要求留在京城,以便可以經常為皇帝修理這兩樣東西。正好1604年4月,徐光啟中進士後要留在北京。兩人的交往也多起來。在此之前,徐光啟對中國傳統數字已有較深入的瞭解,他跟利瑪竇學習了西方科技後,向利瑪竇請求合作翻譯《幾何原本》,以克服傳統數學只言“法”而不言“義”的缺陷,認為“此書未譯,則他書俱不可得論。”利瑪竇勸他不要衝動,因為翻譯實在太難,徐光啟回答說:“一物不知,儒者之恥。”

  《幾何原本》讀後感5

  數學中最古老的一門分科。據說是起源於古埃及尼羅河氾濫後為整修土地而產生的測量法,它的外國語名稱geometry就是由geo(土地)與metry(測量)組成的。泰勒斯曾經利用兩三角形的等同性質,做了間接的測量工作;

  畢達哥拉斯學派則以勾股定理等著名。

  在中國古代早有勾股測量,漢朝人撰寫的《周髀算經》的第一章敘述了西周開國時期(約公元前1000)周公姬旦同商高的問答,討論用矩測量的方法,得出了著名的勾股定律,並舉出了“勾三、股四、弦五”的例子。在埃及產生的幾何學傳到希臘,然後逐步發展起來而變為理論的數學。

  哲學家柏拉圖(公元前429~前348)對幾何學作了深奧的探討,確立起今天幾何學中的定義、公設、公理、定理等概念,而且樹立了哲學與數學中的分析法與綜合法的概念。此外,梅內克繆斯(約公元前340)已經有了圓錐曲線的概念。

  希臘文化以柏拉圖學派的時代為頂峰,以後逐漸衰落,而埃及的亞歷山大學派則漸漸繁榮起來,它長時間成了文化的中心。歐幾里得把至希臘時代為止所得到的數學知識集其大成,編成十三卷的《幾何原本》,這就是直到今天仍廣泛地作為幾何學的教科書使用下來的歐幾里得幾何學(簡稱歐氏幾何)。

  徐光啟於1606年翻譯了《幾何原本》前六卷,至1847年李善蘭才把其餘七卷譯完。“幾何”與其說是geo的音譯,毋寧解釋為“大小”較為妥當。

  誠然,現代幾何學是有關圖形的一門數學分科,但是在希臘時代則代表了數學的全部。歐幾里得在《幾何原本》中首先敘述了一些定義,然後提出五個公設和五個公理。其中第五公設尤為著名:如果兩直線和第三直線相交而且在同一側所構成的兩個同側內角之和小於二直角,那麼這兩直線向這一側適當延長後一定相交。《幾何原本》中的公理系統雖然不能說是那麼完備,但它恰恰成了現代幾何學基礎論的先驅。

  直到19世紀末,D.希爾伯特才建立了嚴密的歐氏幾何公理體系。

  第五公設和其餘公設相比較,內容顯得複雜,於是引起後來人們的注意,但用其餘公設來推導它的企圖,都失敗了。這個公設等價於下述的公設:在平面上,過一直線外的一點可引一條而且只有一條和這直線不相交的直線。

  Η.И.羅巴切夫斯基和J.波爾約獨立地建立了一種新幾何學,其中揚棄了第五公設而代之以另一公設:在平面上,過一直線外的一點可引無限條和這直線不相交的直線。這樣建立起來的無矛盾的幾何學稱為雙曲的非歐幾里得幾何。

  (G.F.)B.黎曼則把第五公設換作“在平面上,過一直線外的一點所引的任何直線一定和這直線相交”,這樣建立的無矛盾的幾何學稱橢圓的非歐幾里得幾何。

  《幾何原本》讀後感6

  今天我讀了一本書,叫《幾何原本》。它是古希臘數學家、哲學家歐幾里德的一本不朽之作,集合希臘數學家的成果和精神於一書。

  《幾何原本》收錄了原著13卷全部內容,包含了5條公理、5條公設、23個定義和467個命題,即先提出公理、公設和定義,再由簡到繁予以證明,並在此基礎上形成歐氏幾何學體系。歐幾里德認為,數學是一個高貴的世界,即使身為世俗的君主,在這裡也毫無特權。與時間中速朽的物質相比,數學所揭示的世界才是永恆的。

  《幾何原本》既是數學著作,又極富哲學精神,並第一次完成了人類對空間的認識。古希臘數學脫胎於哲學,它使用各種可能的描述,解析了我們的宇宙,使它不在混沌、分離,它完全有別於起源並應用於世俗的中國和古埃及數學。它建立起物質與精神世界的確定體系,致使渺小如人類也能從中獲得些許自信。

  本書命題1便提出瞭如何作等邊三角形,由此產生了三角形全等定理。即角、邊、角或邊、角、邊或邊、邊、邊相等,並進一步提出了等腰三角形——等邊即等角;等角即等邊。就這樣歐幾里德分別從點、線、面、角四個部分,由淺入深,提出了自己的幾何理論。前面的命題為後面的鋪墊;後面的命題由前面的推導,環環相扣,十分嚴謹。

  這本書博大精深,我只能看懂十分之一左右,非常震撼,歐幾里德不愧為幾何之父!他就是數學史上最亮的一顆星。我要向他學習,沿著自己的目標堅定的走下去。

  《幾何原本》讀後感7

  古希臘大數學家歐幾里德是和他的鉅著——《幾何原本》一起名垂千古的。這本書是世界上最著名、最完整而且流傳最廣的數學著作,也是歐幾里德最有價值的一部著作。在《原本》裡,歐幾里德系統地總結了古代勞動人民和學者們在實踐和思考中獲得的幾何知識,歐幾里德把人們公認的一些事實列成定義和公理,以形式邏輯的方法,用這些定義和公理來研究各種幾何圖形的性質,從而建立了一套從公理、定義出發,論證命題得到定理得幾何學論證方法,形成了一個嚴密的邏輯體系——幾何學。而這本書,也就成了歐式幾何的奠基之作。

  兩千多年來,《幾何原本》一直是學習幾何的主要教材。哥白尼、伽利略、笛卡爾、牛頓等許多偉大的學者都曾學習過《幾何原本》,從中吸取了豐富的營養,從而作出了許多偉大的成就。

  從歐幾里得發表《幾何原本》到現在,已經過去了兩千多年,儘管科學技術日新月異,由於歐氏幾何具有鮮明的直觀性和有著嚴密的邏輯演繹方法相結合的特點,在長期的實踐中表明,它巳成為培養、提高青少年邏輯思維能力的好教材。歷史上不知有多少科學家從學習幾何中得到益處,從而作出了偉大的貢獻。

  少年時代的牛頓在劍橋大學附近的夜店裡買了一本《幾何原本》,開始他認為這本書的內容沒有超出常識範圍,因而並沒有認真地去讀它,而對笛卡兒的“座標幾何”很感興趣而專心攻讀。後來,牛頓於1664年4月在參加特列臺獎學金考試的時候遭到落選,當時的考官巴羅博士對他說:“因為你的幾何基礎知識太貧乏,無論怎樣用功也是不行的。”

  這席談話對牛頓的`震動很大。於是,牛頓又重新把《幾何原本》從頭到尾地反覆進行了深入鑽研,為以後的科學工作打下了堅實的數學基礎。

  但是,在人類認識的長河中,無論怎樣高明的前輩和名家,都不可能把問題全部解決。由於歷史條件的限制,歐幾里得在《幾何原本》中提出幾何學的“根據”問題並沒有得到徹底的解決,他的理論體系並不是完美無缺的。比如,對直線的定義實際上是用一個未知的定義來解釋另一個未知的定義,這樣的定義不可能在邏輯推理中起什麼作用。又如,歐幾里得在邏輯推理中使用了“連續”的概念,但是在《幾何原本》中從未提到過這個概念。

  《幾何原本》讀後感8

  《幾何原本》是古希臘數學家歐幾里得的一部不朽之作,大約成書於公元前300年左右,是一部劃時代的著作,是最早用公理法建立起演繹數學體系的典範。它從少數幾個原始假定出發,透過嚴密的邏輯推理,得到一系列的命題,從而保證了結論的準確可靠。《幾何原本》的原著有13卷,共包含有23個定義、5個公設、5個公理、286個命題。是當時整個希臘數學成果、方法、思想和精神的結晶,其內容和形式對幾何學本身和數學邏輯的發展有著巨大的影響。自它問世之日起,在長達二千多年的時間裡一直盛行不衰。它歷經多次翻譯和修訂,自1482年第一個印刷本出版後,至今已有一千多種不同的版本。除了《聖經》之外,沒有任何其他著作,其研究、使用和傳播之廣泛,能夠與《幾何原本》相比。但《幾何原本》超越民族、種族、宗教信仰、文化意識方面的影響,卻是《聖經》所無法比擬的。

  《幾何原本》的希臘原始抄本已經流失了,它的所有現代版本都是以希臘評註家泰奧恩(Theon,約比歐幾里得晚七百年)編寫的修訂本為依據的。

  《幾何原本》的泰奧恩修訂本分13卷,總共有465個命題,其內容是闡述平面幾何、立體幾何及算術理論的系統化知識。第一卷首先給出了一些必要的基本定義、解釋、公設和公理,還包括一些關於全等形、平行線和直線形的熟知的定理。該卷的最後兩個命題是畢達哥拉斯定理及其逆定理。這裡我們想到了關於英國哲學家T.霍布斯的一個小故事:有一天,霍布斯在偶然翻閱歐幾里得的《幾何原本》,看到畢達哥拉斯定理,感到十分驚訝,他說:“上帝啊!這是不可能的。”他由後向前仔細閱讀第一章的每個命題的證明,直到公理和公設,他終於完全信服了。第二卷篇幅不大,主要討論畢達哥拉斯學派的幾何代數學。

  第三捲包括圓、弦、割線、切線以及圓心角和圓周角的一些熟知的定理。這些定理大多都能在現在的中學數學課本中找到。第四卷則討論了給定圓的某些內接和外切正多邊形的尺規作圖問題。第五卷對歐多克斯的比例理論作了精彩的解釋,被認為是最重要的數學傑作之一。據說,捷克斯洛伐克的一位並不出名的數學家和牧師波爾查諾(Bolzano,1781-1848),在布拉格度假時,恰好生病,為了分散注意力,他拿起《幾何原本》閱讀了第五卷的內容。他說,這種高明的方法使他興奮無比,以致於從病痛中完全解脫出來。此後,每當他朋友生病時,他總是把這作為一劑靈丹妙藥問病人推薦。第七、八、九卷討論的是初等數論,給出了求兩個或多個整數的最大公因子的“歐幾里得演算法”,討論了比例、幾何級數,還給出了許多關於數論的重要定理。第十卷討論無理量,即不可公度的線段,是很難讀懂的一卷。最後三卷,即第十一、十二和十三卷,論述立體幾何。目前中學幾何課本中的內容,絕大多數都可以在《幾何原本》中找到。

  《幾何原本》按照公理化結構,運用了亞里士多德的邏輯方法,建立了第一個完整的關於幾何學的演繹知識體系。所謂公理化結構就是:選取少量的原始概念和不需證明的命題,作為定義、公設和公理,使它們成為整個體系的出發點和邏輯依據,然後運用邏輯推理證明其他命題。《幾何原本》成為了兩千多年來運用公理化方法的一個絕好典範。

  誠然,正如一些現代數學家所指出的那樣,《幾何原本》存在著一些結構上的缺陷,但這絲毫無損於這部著作的崇高價值。它的影響之深遠.使得“歐幾里得”與“幾何學”幾乎成了同義語。它集中體現了希臘數學所奠定的數學思想、數學精神,是人類文化遺產中的一塊瑰寶。